男女扒开双腿猛进入爽爽免费,男生下面伸进女人下面的视频,美女跪下吃男人的j8视频,一本色道在线久88在线观看片

變頻器論文模板(10篇)

時間:2023-03-23 15:23:30

導言:作為寫作愛好者,不可錯過為您精心挑選的10篇變頻器論文,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。

變頻器論文

篇1

一、引言

在通用變頻器、異步電動機和機械負載所組成的變頻調速傳統系統中,當電動機所傳動的位能負載下放時,電動機將可能處于再生發電制動狀態;或當電動機從高速到低速(含停車)減速時,頻率可以突減,但因電機的機械慣性,電機可能處于再生發電狀態,傳動系統中所儲存的機械能經電動機轉換成電能,通過逆變器的六個續流二極管回送到變頻器的直流回路中。此時的逆變器處于整流狀態。這時,如果變頻器中沒采取消耗能量的措施,這部分能量將導致中間回路的儲能電容器的電壓上升。如果當制動過快或機械負載為提升機類時,這部分能量就可能對變頻器帶來損壞,所以這部分能量我們就應該考慮考慮了。

在通用變頻器中,對再生能量最常用的處理方式有兩種:(1)、耗散到直流回路中人為設置的與電容器并聯的“制動電阻”中,稱之為動力制動狀態;(2)、使之回饋到電網,則稱之為回饋制動狀態(又稱再生制動狀態)。還有一種制動方式,即直流制動,可以用于要求準確停車的情況或起動前制動電機由于外界因素引起的不規則旋轉。

在書籍、刊物上有許多專家談論過有關變頻器制動方面的設計與應用,尤其是近些時間有過許多關于“能量回饋制動”方面的文章。今天,筆者提供一種新型的制動方法,它具有“回饋制動”的四象限運轉、運行效率高等優點,也具有“能耗制動”對電網無污染、可靠性高等好處。

二、能耗制動

利用設置在直流回路中的制動電阻吸收電機的再生電能的方式稱為能耗制動。

其優點是構造簡單;對電網無污染(與回饋制動作比較),成本低廉;缺點是運行效率低,特別是在頻繁制動時將要消耗大量的能量且制動電阻的容量將增大。

一般在通用變頻器中,小功率變頻器(22kW以下)內置有了剎車單元,只需外加剎車電阻。大功率變頻器(22kW以上)就需外置剎車單元、剎車電阻了。

三、回饋制動

實現能量回饋制動就要求電壓同頻同相控制、回饋電流控制等條件。它是采用有源逆變技術,將再生電能逆變為與電網同頻率同相位的交流電回送電網,從而實現制動。回饋制動的優點是能四象限運行,如圖3所示,電能回饋提高了系統的效率。其缺點是:(1)、只有在不易發生故障的穩定電網電壓下(電網電壓波動不大于10%),才可以采用這種回饋制動方式。因為在發電制動運行時,電網電壓故障時間大于2ms,則可能發生換相失敗,損壞器件。(2)、在回饋時,對電網有諧波污染。(3)、控制復雜,成本較高。

四、新型制動方式(電容反饋制動)

1、主回路原理

整流部分采用普通的不可控整流橋進行整流,濾波回路采用通用的電解電容,延時回路采用接觸器或可控硅都行。充電、反饋回路由功率模塊IGBT、充電、反饋電抗器L及大電解電容C(容量約零點幾法,可根據變頻器所在的工況系統決定)組成。逆變部分由功率模塊IGBT組成。保護回路,由IGBT、功率電阻組成。

(1)電動機發電運行狀態

CPU對輸入的交流電壓和直流回路電壓νd的實時監控,決定向VT1是否發出充電信號,一旦νd比輸入交流電壓所對應的直流電壓值(如380VAC—530VDC)高到一定值時,CPU關斷VT3,通過對VT1的脈沖導通實現對電解電容C的充電過程。此時的電抗器L與電解電容C分壓,從而確保電解電容C工作在安全范圍內。當電解電容C上的電壓快到危險值(比如說370V),而系統仍處于發電狀態,電能不斷通過逆變部分回送到直流回路中時,安全回路發揮作用,實現能耗制動(電阻制動),控制VT3的關斷與開通,從而實現電阻R消耗多余的能量,一般這種情況是不會出現的。

(2)電動機電動運行狀態

當CPU發現系統不再充電時,則對VT3進行脈沖導通,使得在電抗器L上行成了一個瞬時左正右負的電壓(如圖標識),再加上電解電容C上的電壓就能實現從電容到直流回路的能量反饋過程。CPU通過對電解電容C上的電壓和直流回路的電壓的檢測,控制VT3的開關頻率以及占空比,從而控制反饋電流,確保直流回路電壓νd不出現過高。

2、系統難點

(1)電抗器的選取

(a)、我們考慮到工況的特殊性,假設系統出現某種故障,導致電機所載的位能負載自由加速下落,這時電機處于一種發電運行狀態,再生能量通過六個續流二極管回送至直流回路,致使νd升高,很快使變頻器處于充電狀態,這時的電流會很大。所以所選取電抗器線徑要大到能通過此時的電流。

(b)、在反饋回路中,為了使電解電容在下次充電前把盡可能多的電能釋放出來,選取普通的鐵芯(硅鋼片)是不能達到目的的,最好選用鐵氧體材料制成的鐵芯,再看看上述考慮的電流值如此大,可見這個鐵芯有多大,素不知市面上有無這么大的鐵氧體鐵芯,即使有,其價格也肯定不會很低。所以筆者建議充電、反饋回路各采用一個電抗器。

(2)控制上的難點

(a)、變頻器的直流回路中,電壓νd一般都高于500VDC,而電解電容C的耐壓才400VDC,可見這種充電過程的控制就不像能量制動(電阻制動)的控制方式了。其在電抗器上所產生的瞬時電壓降為,電解電容C的瞬時充電電壓為νc=νd-νL,為了確保電解電容工作在安全范圍內(≤400V),就得有效的控制電抗器上的電壓降νL,而電壓降νL又取決于電感量和電流的瞬時變化率。

(b)、在反饋過程中,還得防止電解電容C所放的電能通過電抗器造成直流回路電壓過高,以致系統出現過壓保護。

3、主要應用場合及應用實例

正是由于變頻器的這種新型制動方式(電容反饋制動)所具有的優越性,近些來,不少用戶結合其設備的特點,紛紛提出了要配備這種系統。由于技術上有一定的難度,國外還不知有無此制動方式?國內目前只有山東風光電子公司由以前采用回饋制動方式的變頻器(仍有2臺在正常運行中)改用了這種電容反饋制動方式的新型礦用提升機系列。

篇2

detailedintroductionontheoperationprinciple,characteristicandapplicationofthe

electrolytecapacitancebrakeisgiven.

關鍵詞:變頻器能量回饋電容反饋制動

Keywords:InverterEnergyfeedbackEectro-capacitancefeedbackbrake

[中圖分類號]TP273[文獻標識碼]B文章編號1561-0330(2003)06-00

1引言

在通用變頻器、異步電動機和機械負載所組成的變頻調速傳統系統中,當電動機所傳動的位能負載下放時,電動機將可能處于再生發電制動狀態;或當電動機從高速到低速(含停車)減速時,頻率可以突減,但因電機的機械慣性,電機可能處于再生發電狀態,傳動系統中所儲存的機械能經電動機轉換成電能,通過逆變器的六個續流二極管回送到變頻器的直流回路中。此時的逆變器處于整流狀態。這時,如果變頻器中沒采取消耗能量的措施,這部分能量將導致中間回路的儲能電容器的電壓上升。如果當制動過快或機械負載為提升機類時,這部分能量就可能對變頻器帶來損壞,所以這部分能量我們就應該考慮考慮了。

在通用變頻器中,對再生能量最常用的處理方式有兩種:(1)、耗散到直流回路中人為設置的與電容器并聯的“制動電阻”中,稱之為動力制動狀態;(2)、使之回饋到電網,則稱之為回饋制動狀態(又稱再生制動狀態)。還有一種制動方式,即直流制動,可以用于要求準確停車的情況或起動前制動電機由于外界因素引起的不規則旋轉。

在書籍、刊物上有許多專家談論過有關變頻器制動方面的設計與應用,尤其是近些時間有過許多關于“能量回饋制動”方面的文章。今天,筆者提供一種新型的制動方法,它具有“回饋制動”的四象限運轉、運行效率高等優點,也具有“能耗制動”對電網無污染、可靠性高等好處。

2能耗制動

利用設置在直流回路中的制動電阻吸收電機的再生電能的方式稱為能耗制動,如圖1所示。

其優點是構造簡單;對電網無污染(與回饋制動作比較),成本低廉;缺點是運行效率低,特別是在頻繁制動時將要消耗大量的能量且制動電阻的容量將增大。

一般在通用變頻器中,小功率變頻器(22kW以下)內置有了剎車單元,只需外加剎車電阻。大功率變頻器(22kW以上)就需外置剎車單元、剎車電阻了。

3回饋制動

實現能量回饋制動就要求電壓同頻同相控制、回饋電流控制等條件。它是采用有源逆變技術,將再生電能逆變為與電網同頻率同相位的交流電回送電網,從而實現制動如圖2所示。

回饋制動的優點是能四象限運行,如圖3所示,電能回饋提高了系統的效率。其缺點是:(1)、只有在不易發生故障的穩定電網電壓下(電網電壓波動不大于10%),才可以采用這種回饋制動方式。因為在發電制動運行時,電網電壓故障時間大于2ms,則可能發生換相失敗,損壞器件。(2)、在回饋時,對電網有諧波污染。(3)、控制復雜,成本較高。

4新型制動方式(電容反饋制動)

4.1主回路原理

主回路原理圖如圖4所示。

整流部分采用普通的不可控整流橋進行整流(如圖中的VD1——VD6組成),濾波回路采用通用的電解電容(圖中C1、C2),延時回路采用接觸器或可控硅都行(圖中T1)。充電、反饋回路由功率模塊IGBT(圖中VT1、VT2)、充電、反饋電抗器L及大電解電容C(容量約零點幾法,可根據變頻器所在的工況系統決定)組成。逆變部分由功率模塊IGBT組成(如圖VT5—VT10)。保護回路,由IGBT、功率電阻組成。

(1)電動機發電運行狀態

CPU對輸入的交流電壓和直流回路電壓νd的實時監控,決定向VT1是否發出充電信號,一旦νd比輸入交流電壓所對應的直流電壓值(如380VAC—530VDC)高到一定值時,CPU關斷VT3,通過對VT1的脈沖導通實現對電解電容C的充電過程。此時的電抗器L與電解電容C分壓,從而確保電解電容C工作在安全范圍內。當電解電容C上的電壓快到危險值(比如說370V),而系統仍處于發電狀態,電能不斷通過逆變部分回送到直流回路中時,安全回路發揮作用,實現能耗制動(電阻制動),控制VT3的關斷與開通,從而實現電阻R消耗多余的能量,一般這種情況是不會出現的。

(2)電動機電動運行狀態

當CPU發現系統不再充電時,則對VT3進行脈沖導通,使得在電抗器L上行成了一個瞬時左正右負的電壓(如圖標識),再加上電解電容C上的電壓就能實現從電容到直流回路的能量反饋過程。CPU通過對電解電容C上的電壓和直流回路的電壓的檢測,控制VT3的開關頻率以及占空比,從而控制反饋電流,確保直流回路電壓νd不出現過高。

4.4系統難點

(1)電抗器的選取

(a)、我們考慮到工況的特殊性,假設系統出現某種故障,導致電機所載的位能負載自由加速下落,這時電機處于一種發電運行狀態,

再生能量通過六個續流二極管回送至直流回路,致使νd升高,很快使變頻器處于充電狀態,這時的電流會很大。所以所選取電抗器線徑要大到能通過此時的電流。

(b)、在反饋回路中,為了使電解電容在下次充電前把盡可能多的電能釋放出來,選取普通的鐵芯(硅鋼片)是不能達到目的的,最好選用鐵氧體材料制成的鐵芯,再看看上述考慮的電流值如此大,可見這個鐵芯有多大,素不知市面上有無這么大的鐵氧體鐵芯,即使有,其價格也肯定不會很低。

所以筆者建議充電、反饋回路各采用一個電抗器。

(2)控制上的難點

(a)、變頻器的直流回路中,電壓νd一般都高于500VDC,而電解電容C的耐壓才400VDC,可見這種充電過程的控制就不像能量制動(電阻制動)的控制方式了。其在電抗器上所產生的瞬時電壓降為,電解電容C的瞬時充電電壓為νc=νd-νL,為了確保電解電容工作在安全范圍內(≤400V),就得有效的控制電抗器上的電壓降νL,而電壓降νL又取決于電感量和電流的瞬時變化率。

(b)、在反饋過程中,還得防止電解電容C所放的電能通過電抗器造成直流回路電壓過高,以致系統出現過壓保護。

4.5主要應用場合及應用實例

正是由于變頻器的這種新型制動方式(電容反饋制動)所具有的優越性,近些來,不少用戶結合其設備的特點,紛紛提出了要配備這種系統。由于技術上有一定的難度,國外還不知有無此制動方式?國內目前只有山東風光電子公司由以前采用回饋制動方式的變頻器(仍有2臺在正常運行中)改用了這種電容反饋制動方式的新型礦用提升機系列,到目前為止,這種電容反饋制動的變頻器正長期正常運行在山東寧陽保安煤礦及山西太原等地,填補了國內這一空白。

篇3

變頻器必須具備以下幾個條件:過載能力較大;過載時間足夠;具備較大的啟動及轉動轉矩;具備恒定轉矩特性。

(2)對于風機、泵類的負載

選擇變頻調速系統時需符合以下兩個條件:設備經濟性、可靠性較高,能夠提供穩定的轉速;可以針對機電設備的情況選擇變頻控制模式。

(3)對于恒功率負載

選擇變頻器時需符合以下兩個條件:輸出為定值控制;該變頻器能夠滿足對其進行針對性設計的需求。因此,為了確保電機處于經濟運行狀態,必須根據負載的機械特性,選擇合適的變頻調速電機。而使用中的變頻調速電機,要盡量避免長時間空載、輕載,同時要加強設備維護檢修,使其保持在最佳工作狀態,

二改進四象限變頻器,提高煤礦機電設備的靈活性

采煤作業環境復雜多變,大量機電設備處于負荷頻繁波動狀態,這些因素給煤礦安全生產帶來了很大困擾。當前煤礦機電設備采用四象變頻器技術大大緩解了這個現象。四象限變頻器將整流電路由原來的全波整流橋調整為由智能功率模塊構成的可控整流橋,以便更好地完成采掘工作。四象限變頻器與普通變頻器的區別在于電機處于發電狀態時,其逆變電路和整流電路將會發生互換,從而實現將電機所產生的電量輸送至其他設備的目的。

1在采煤機中的應用

我國采煤機變頻調速系統已由之前的“一拖二”改進為現在的“一拖一”。我國自主研發的采煤機已處于世界領先水平,例如采煤機ACS-800變頻器,可以確保加速時不過流、減速時不過壓。整個過程可根據電機功率進行計算,還能根據現場情況做適當調整,從而實現降低能耗、提升工作效率的目的。

2在提升機中的應用

在煤礦提升裝置中應用時,普通變頻器存在較大的弊端,問題主要在于電機制動產生的能量會過多消耗在電阻上。變頻技術的創新,可以將電機處于二、四象限運行過程中發電產生的電能回饋給電網側使用,從而讓提升機實現勻速、加速工作與平穩啟動、關閉,并借助數字控制系統有效提升工作效率,這對保障工作人員的人身安全起著重要作用。

3在膠帶輸送機中的應用

膠帶輸送機具有大功率、高電壓等特點,主要通過膠帶與輪轂之間的摩擦作用實現煤炭傳送。可以采用變頻節能技術對上山膠帶輸送機進行改造,原理和提升機相似,改造可以改變膠帶輸送機的啟動模式,徹底實現軟啟動,讓機電設備實現平穩運行。變頻節能技術還能降低機電設備的發熱量,在降低能耗的基礎上延長膠帶的使用壽命,最終提高膠帶輸送機的工作效率。

三使用變頻技術改善

各電路元件間的邏輯關系,優化電路變頻器由鍵盤、電機、電源板、控制主板等構成,結構相對復雜。采用變頻節能技術改善電路元件之間的邏輯關系,不僅可以優化電路,為煤礦機電設備提供適宜的運行環境,而且能夠在一定程度上延長煤礦機電設備的使用壽命。變頻節能技術實現這一功能的關鍵在于通過IGBT等功率開關器件以及PWM控制技術,實現從交流到直流再到交流的轉換。變頻器電路一般包括主電路和控制電路兩個部分,主電路的正常運行需要控制信號配合。通常電壓檢測電路會設置一個電壓上限值,如果檢測到的直流母線電壓超過該上限值,電壓檢測電路便向變頻器發出控制信號,使變頻器的過壓保護啟動。

篇4

變頻器是運動控制系統中的功率變換器。目前的運動控制系統包含多種學科的技術領域,總的發展趨勢是驅

動的交流化、功率變換器的高頻化、控制的數字化、智能化和網絡化。因此,變頻器作為系統的重要功率變換部件,因提供可控的高性能變壓變頻的交流電源而得到迅猛發展。

變頻器的快速發展得益于電力電子技術、計算機技術和自動控制技術及電機控制理論的發展。變頻器的發展水平是由電力電子技術、電機控制方式以及自動化控制水平三個方面決定的。當前競爭的焦點在于高壓變頻器的研究開發生產方面。

隨著新型電力電子器件和高性能微處理器的應用以及控制技術的發展,變頻器的性能價格比越來越高,體積越來越小,而且廠家仍在不斷地提高可靠性,為實現變頻器的進一步小型輕量化、高性能化和多功能化以及無公害化而做著新的努力。辨別變頻器性能的優劣,一要看其輸出交流電壓的諧波對電機的影響;二要看對電網的諧波污染和輸入功率因數;最后還要看本身的能量損耗(即效率)。這里僅以量大面廣的交—直—交變頻器為例,闡述其發展趨勢:主電路功率開關元件的自關斷化、模塊化、集成化、智能化;開關頻率不斷提高,開關損耗進一步降低。

在變頻器主電路的拓撲結構方面。變頻器的網側變流器對低壓小容量的裝置常采用6脈沖變流器,而對中壓大容量的裝置采用多重化12脈沖以上的變流器。負載側變流器對低壓小容量裝置常采用兩電平的橋式逆變器,而對中壓大容量的裝置采用多電平逆變器。對于四象限運行的轉動,為實現變頻器再生能量向電網回饋和節省能量,網側變流器應為可逆變流器,同時出現了功率可雙向流動的雙PWM變頻器,對網側變流器加以適當控制可使輸入電流接近正弦波,減少對電網的公害。

脈寬調制變壓變頻器的控制方法可以采用正弦波脈寬調制控制、消除指定次數諧波的PWM控制、電流跟蹤控制、電壓空間矢量控制(磁鏈跟蹤控制)。

交流電動機變頻調整控制方法的進展主要體現在由標量控制向高動態性能的矢量控制與直接轉矩控制發展和開發無速度傳感器的矢量控制和直接轉矩控制系統方面。微處理器的進步使數字控制成為現代控制器的發展方向。運動控制系統是快速系統,特別是交流電動機高性能的控制需要存儲多種數據和快速實時處理大量信息。

近幾年來,國外各大公司紛紛推出以DSP(數字信號處理器)為基礎的內核,配以電機控制所需的功能電路,集成在單一芯片內的稱為DSP單片電機控制器,價格大大降低、體積縮小、結構緊湊、使用便捷、可靠性提高。

在DSP出現之前數字信號處理只能依靠MPU(微處理器)來完成。但MPU較低的處理速度無法滿足高速實時的要求。隨著大規模集成電路技術的發展,1982年世界上首枚DSP芯片誕生了。這種DSP器件采用微米工藝NMOS技術制作,雖功耗和尺寸稍大,但運算速度卻比MPU快了幾十倍,尤其在語音合成和編碼解碼器中得到了廣泛應用。DSP芯片的問世標志著DSP應用系統由大型系統向小型化邁進了一大步。隨著CMOS技術的進步與發展,第二代基于CMOS工藝的DSP芯片應運而生,其存儲容量和運算速度成倍提高,成為語音處理、圖像硬件處理技術的基礎。80年代后期,第三代DSP芯片問世,運算速度進一步提高,其應用于范圍逐步擴大到通信、計算機領域。

篇5

1.引言

變頻器作為一種高效節能的電機調速裝置,因其較高的性能價格比,在工廠得到了越來越廣泛的應用。眾所周知,變頻器是由整流電路、濾波電路、逆變電路組成。其中整流電路和逆變電路中均使用了半導體開關元件,在控制上則采用的是PWM控制方式,這就決定了變頻器的輸入、輸出電壓和電流除了基波之外,還含有許多的高次諧波成分。這些高次諧波成分將會引起電網電壓波形的畸變,產生無線電干擾電波,它們對周邊的設備、包括變頻器的驅動對象--電動機帶來不良的影響。同時由于變頻器的使用,電網電源電壓中會產生高次諧波的成分,電網電源內有晶閘管整流設備工作時,會引導電源波形產生畸形。另外,由于遭受雷擊或電源變壓器的開閉,電功率用電器的開閉等,產生的浪涌電壓,也將使電源波形畸變,這種波形畸變的電網電源給變頻器供電時,又將對變頻器產生不良影響。文章對于上述現象進行了分析并提出了降低這些不良影響的措施。

2.外界對變頻器的干擾

供電電源對變頻器的干擾主要有過壓、欠壓、瞬時掉電;浪涌、跌落;尖峰電壓脈沖;射頻干擾。變頻器的供電電源受到來自被污染的交流電網的諧波干擾后若不加處理,電網噪聲就會通過電網的電源電路干擾變頻器。變頻器的輸入電路側,是將交流電壓變成直流電壓。這就是常稱為"電網污染"的整流電路。由于這個直流電壓是在被濾波電容平滑之后輸出給后續電路的,電源供給變頻器的實際上是濾波電容的充電電流,這就使輸入電壓波形產生畸變。

(1)電網中存在各種整流設備、交直流互換設備、電子電壓調整設備,非線性負載及照明設備等大量諧波源

電源網絡內有這些負荷都使電網中的電壓、電流產生波形畸變,從而對電網中其它設備產生危害的干擾。例如:當供電網絡內有較大容量的晶閘管換流設備時,因晶閘管總是在每相半周期內的部分時間內導通,故容易使網絡電壓出現凹口,波形嚴重失真。它使變頻器輸入側的整流電路有可能因出現較大的反向回復電壓而受到損害,從而導致輸入回路擊穿而燒毀。

(2)電力補償電容對變頻器的干擾

電力部門對用電單位的功率因數有一定的要求,為此,許多用戶都在變電所采用集中電容補償的方法來提高功率因數。在補償電容投入或切出的暫態過程中,網絡電壓有可能出現很高的峰值,其結果是可能使變頻器的整流二極管因承受過高的反向電壓而擊穿。

(3)電源輻射傳播的干擾信號

電磁干擾(EMI),是外部噪聲和無用信號在接收中所造成的電磁干擾,通常是通過電路傳導和以場的形式傳播的[2]即以電磁波方式向空中幅射,其輻射場強取決于干擾源的電流強度、裝置的等效輻射阻抗以及干擾源的發射頻率。

對于(1)、(2)兩項產生的干擾抑制可以在變頻器輸入電路中,串入交流電抗器,它對于基波頻率下的阻抗是微不足道的。但對于頻率較高的高頻干擾信號來說,呈現很高的阻抗,能有效地抑制干擾的作用。對于(3)項的干擾信號主要通過吸收方式來削弱。變頻器電源輸入端,通常都加有吸收電容。也可以再加上專用的"無線電干擾濾器",來進一步削弱干擾信號。

3.變頻器對周邊設備的干擾及對策

上面已經講過變頻器能使輸入電源電壓產生高次諧波。同時,變頻器的輸出電壓和電流除了基波之外,還含有許多高次諧波的成分,它們將以各種方式把自己的能量傳播出去,這些高次諧波對周圍設備帶來不良的影響。其中,供電電源的畸變,使處于同一供電電源的其他設備出現誤動作,過熱、噪聲和振動;產生的無線干擾電波給變頻器周圍的電視機、收音機、手機等無線電接收裝置帶來干擾,嚴重時不能正常工作;對變頻器的外部控制信號產生干擾,這些控制信號受干擾后,就不能準確、正常地控制變頻器運行,使被變頻器驅動的電動機產生噪音,振動和發熱現象。

(1)對接在同一電源設備帶來的干擾

當變頻器的容量較大時,將使網絡電壓產生畸變,通過阻抗耦合或接地回路耦合將干擾傳入其它電路。消除或削弱對接在同一電源的設備帶來的干擾,可以將變頻器的輸入端串入交流電抗器,在變頻器的整流側插入直流電抗器。也可以在變頻器電源輸入端插入濾波器,如下圖1所示:

LC濾波器是被動濾波器,它由電抗和電容組成對高次諧波的共振回路,從而達到吸收高次諧波的目的。有源濾波器的工作原理是:通過對電流中高次諧波進行檢測,并根據檢測結果,輸入與高次諧波成分相位相反的電流來削弱高次諧波的目的。

(2)對于產生的無線電干擾波

目前,變頻器絕大部分是采用PWM控制方法。變頻器輸出信號是高頻的開關信號,在變頻器的輸出電壓、輸出電流中含有高次諧波,通過靜電感應和電磁感應,產生無線電干擾波。這些干擾波有的通過電線傳導,有些輻射至空中的電磁波和電場直接輻射。而輻射場中的金屬物體還可能形成二次輻射。同樣,變頻器外部的輻射也會干擾變頻器的正常工作。

電線傳導的無線電干擾波的抑制,可以采用噪聲濾波變壓器,對高次諧波形成絕緣;插入電抗器,以提高對高次諧波成分的阻抗,在變頻器的輸入端插入濾波器。

輻射無線電干擾波的抑制,較傳導無線電干擾波要困難一些。這種無線電干擾的大小,決定于安裝變頻器設備本身的結構,和電動機電纜線長短等許多因素有關。可以盡量縮短電動機電線,電線采用雙絞措施,減少阻抗;變頻器輸入、輸出線裝入鐵管屏蔽;將變頻器機殼良好地接;變頻器輸入、輸出端串接電抗器,插入濾波器。

(3)對于產生的噪聲干擾

由于變頻器采用了PWM控制方式,變頻器的輸出電壓波形不是正弦波,通過電動機的電流也難免含有許多諧波。變頻器輸出的諧波頻率與轉子固有頻率的共振,在轉子固有頻率附近的噪聲增大,變頻器輸出的諧波分量使鐵心、機殼、軸架等諧波在其固有頻率附近的噪聲增大。因此,利用變頻器對電動機進行調速控制時,電動機繞組和鐵芯由于諧波的成分而產生噪聲。

下圖2是電動機采用變頻器驅動和采用電網電源直接驅動時的噪音比較。通常,采用變頻器對電動機進行驅動時,電動機產生的噪音要比電網電源直接驅動產生的噪音高出5~10dB。對于噪音的抑制可以采取的措施為:

①選用以IGBT等為逆變模塊的載波頻率較高的低噪音變頻器。選用變頻器專用電動機,在變頻器與電動機之間串入電抗器,以減少PWM控制方式產生的高次諧波。

②在變頻器與電動機之間插入可以將輸出波形轉換成正弦波的濾波器。

③選用低噪音的電抗器。

(4)對于產生的振動干擾

采用變頻器對電動機進行調速控制時,同噪音相同的原因,會使電動機產生振動。特別是較低階的高次諧波所產生的脈動轉矩,給電動機的轉矩輸出帶來較大的振動。若機械系統與這種振動發生共振時,其振動就更為嚴重。

通常可以采取以下措施減小振動:

①強化機械結構的剛性,將剛性連接改為強性連接。

②在變頻器與電動機之間串入電抗器

③降低變頻器的輸出壓頻比。

④改變變頻器的載波頻率。

在變頻器對電動機進行調速過程中,如果調速范圍較大時,應先測到機械系統的共振頻率,然后利用變頻器的頻率跳躍功能,避開這些共振頻率。如果轉距有余量,可以將U/f給定小些。

(5)對于導致控制部件電動機過熱的干擾

采用變頻器對電動機進行調速控制,由于高次諧波的原因,即使是對同一電動機,在同一頻率下運行,電動機也將增加5%~10%的電流。電動機溫度自然會提高。此外,普通電動機的冷卻風扇安裝在電動機軸上的,在連續進行低速運行時,由于自身的冷卻風扇的冷卻能力不足,而出現電動機過熱現象。

電動機過熱的對策有以下幾種:

①為電動機另配冷卻風扇,改自冷式為他冷式。增加低速運行時的冷卻能力。

②選用較大容量的電動機。

③改用變頻器專用電動機。

④改變調速方案,避免電動機連續低速運行。

隨著工廠電氣自動化程度的提高,各種干擾也日益增多,只有對變頻器的干擾問題有深入的認識,并采取相應的處理措施,才能夠減少彼此之間的相互危害,更大程度的確保生產的正常進行和設備的穩定。

篇6

detailedintroductionontheoperationprinciple,characteristicandapplicationofthe

electrolytecapacitancebrakeisgiven.

關鍵詞:變頻器能量回饋電容反饋制動

Keywords:InverterEnergyfeedbackEectro-capacitancefeedbackbrake

[中圖分類號]TP273[文獻標識碼]B文章編號1561-0330(2003)06-00

1引言

在通用變頻器、異步電動機和機械負載所組成的變頻調速傳統系統中,當電動機所傳動的位能負載下放時,電動機將可能處于再生發電制動狀態;或當電動機從高速到低速(含停車)減速時,頻率可以突減,但因電機的機械慣性,電機可能處于再生發電狀態,傳動系統中所儲存的機械能經電動機轉換成電能,通過逆變器的六個續流二極管回送到變頻器的直流回路中。此時的逆變器處于整流狀態。這時,如果變頻器中沒采取消耗能量的措施,這部分能量將導致中間回路的儲能電容器的電壓上升。如果當制動過快或機械負載為提升機類時,這部分能量就可能對變頻器帶來損壞,所以這部分能量我們就應該考慮考慮了。

在通用變頻器中,對再生能量最常用的處理方式有兩種:(1)、耗散到直流回路中人為設置的與電容器并聯的“制動電阻”中,稱之為動力制動狀態;(2)、使之回饋到電網,則稱之為回饋制動狀態(又稱再生制動狀態)。還有一種制動方式,即直流制動,可以用于要求準確停車的情況或起動前制動電機由于外界因素引起的不規則旋轉。

在書籍、刊物上有許多專家談論過有關變頻器制動方面的設計與應用,尤其是近些時間有過許多關于“能量回饋制動”方面的文章。今天,筆者提供一種新型的制動方法,它具有“回饋制動”的四象限運轉、運行效率高等優點,也具有“能耗制動”對電網無污染、可靠性高等好處。

2能耗制動

利用設置在直流回路中的制動電阻吸收電機的再生電能的方式稱為能耗制動,如圖1所示。

其優點是構造簡單;對電網無污染(與回饋制動作比較),成本低廉;缺點是運行效率低,特別是在頻繁制動時將要消耗大量的能量且制動電阻的容量將增大。

一般在通用變頻器中,小功率變頻器(22kW以下)內置有了剎車單元,只需外加剎車電阻。大功率變頻器(22kW以上)就需外置剎車單元、剎車電阻了。

3回饋制動

實現能量回饋制動就要求電壓同頻同相控制、回饋電流控制等條件。它是采用有源逆變技術,將再生電能逆變為與電網同頻率同相位的交流電回送電網,從而實現制動如圖2所示。

回饋制動的優點是能四象限運行,如圖3所示,電能回饋提高了系統的效率。其缺點是:(1)、只有在不易發生故障的穩定電網電壓下(電網電壓波動不大于10%),才可以采用這種回饋制動方式。因為在發電制動運行時,電網電壓故障時間大于2ms,則可能發生換相失敗,損壞器件。(2)、在回饋時,對電網有諧波污染。(3)、控制復雜,成本較高。

4新型制動方式(電容反饋制動)

4.1主回路原理

主回路原理圖如圖4所示。

整流部分采用普通的不可控整流橋進行整流(如圖中的VD1——VD6組成),濾波回路采用通用的電解電容(圖中C1、C2),延時回路采用接觸器或可控硅都行(圖中T1)。充電、反饋回路由功率模塊IGBT(圖中VT1、VT2)、充電、反饋電抗器L及大電解電容C(容量約零點幾法,可根據變頻器所在的工況系統決定)組成。逆變部分由功率模塊IGBT組成(如圖VT5—VT10)。保護回路,由IGBT、功率電阻組成。

(1)電動機發電運行狀態

CPU對輸入的交流電壓和直流回路電壓νd的實時監控,決定向VT1是否發出充電信號,一旦νd比輸入交流電壓所對應的直流電壓值(如380VAC—530VDC)高到一定值時,CPU關斷VT3,通過對VT1的脈沖導通實現對電解電容C的充電過程。此時的電抗器L與電解電容C分壓,從而確保電解電容C工作在安全范圍內。當電解電容C上的電壓快到危險值(比如說370V),而系統仍處于發電狀態,電能不斷通過逆變部分回送到直流回路中時,安全回路發揮作用,實現能耗制動(電阻制動),控制VT3的關斷與開通,從而實現電阻R消耗多余的能量,一般這種情況是不會出現的。

(2)電動機電動運行狀態

當CPU發現系統不再充電時,則對VT3進行脈沖導通,使得在電抗器L上行成了一個瞬時左正右負的電壓(如圖標識),再加上電解電容C上的電壓就能實現從電容到直流回路的能量反饋過程。CPU通過對電解電容C上的電壓和直流回路的電壓的檢測,控制VT3的開關頻率以及占空比,從而控制反饋電流,確保直流回路電壓νd不出現過高。

4.4系統難點

(1)電抗器的選取

(a)、我們考慮到工況的特殊性,假設系統出現某種故障,導致電機所載的位能負載自由加速下落,這時電機處于一種發電運行狀態,

再生能量通過六個續流二極管回送至直流回路,致使νd升高,很快使變頻器處于充電狀態,這時的電流會很大。所以所選取電抗器線徑要大到能通過此時的電流。

(b)、在反饋回路中,為了使電解電容在下次充電前把盡可能多的電能釋放出來,選取普通的鐵芯(硅鋼片)是不能達到目的的,最好選用鐵氧體材料制成的鐵芯,再看看上述考慮的電流值如此大,可見這個鐵芯有多大,素不知市面上有無這么大的鐵氧體鐵芯,即使有,其價格也肯定不會很低。

所以筆者建議充電、反饋回路各采用一個電抗器。

(2)控制上的難點

(a)、變頻器的直流回路中,電壓νd一般都高于500VDC,而電解電容C的耐壓才400VDC,可見這種充電過程的控制就不像能量制動(電阻制動)的控制方式了。其在電抗器上所產生的瞬時電壓降為,電解電容C的瞬時充電電壓為νc=νd-νL,為了確保電解電容工作在安全范圍內(≤400V),就得有效的控制電抗器上的電壓降νL,而電壓降νL又取決于電感量和電流的瞬時變化率。

(b)、在反饋過程中,還得防止電解電容C所放的電能通過電抗器造成直流回路電壓過高,以致系統出現過壓保護。

4.5主要應用場合及應用實例

正是由于變頻器的這種新型制動方式(電容反饋制動)所具有的優越性,近些來,不少用戶結合其設備的特點,紛紛提出了要配備這種系統。由于技術上有一定的難度,國外還不知有無此制動方式?國內目前只有山東風光電子公司由以前采用回饋制動方式的變頻器(仍有2臺在正常運行中)改用了這種電容反饋制動方式的新型礦用提升機系列,到目前為止,這種電容反饋制動的變頻器正長期正常運行在山東寧陽保安煤礦及山西太原等地,填補了國內這一空白。

篇7

而高-高方案又分為多重化技術(簡稱CSML)和三電平(簡稱NPC)方案,目前有的廠家生產的高壓大功率變頻器是采用的三電平方案,而大多數廠家則是采用低壓模塊、多單元串聯的多重化技術。這2種方案比較,各有優缺點,主要表現在:

(1)器件

采用CSML方式,器件數量較多,但都是低壓器件,不但價格低,而且易購置,更換方便。低壓器件的技術也較成熟。而NPC方案,采用器件少,但成本高,且購置困難,維修不方便。

(2)均壓問題(包括靜態均壓和動態均壓)

均壓是影響高壓變頻器的重要因素。采用NPC方式,當輸出電壓較高時(如6kV),單用單個器件不能滿足耐壓要求,必須采用器件直接串聯,這必然帶來均壓問題,失去三電平結構在均壓方面的優勢,系統的可靠性也將受到影響。而采用CSML方案則不存在均壓問題。唯一存在的是當變頻器處于快速制動時,電動機處于發電制動狀態,導致單元內直流母線電壓上升,各單元的直流母線電壓上升程度可能存在差異,通過檢測功率單元直流母線電壓,當任何單元的直流母線電壓超過某一閾值時,自動延長減速時間,以防止直流母線電壓上升,即所謂的過壓失速防止功能。這種技術在低壓變頻器中被廣泛采用,非常成功。

(3)對電網的諧波污染和功率因數

由于CSML方式輸入整流電路的脈波數超過NPC方式,前者在輸入諧波方面的優勢很明顯,因此在綜合功率因數方面也有一定的優勢

(4)輸出波形

NPC方式輸出相電壓是三電平,線電壓是五電平。而CSML方式輸出相電壓為11電平,線電壓為21電平(對五單元串聯而言),而且后者的等效開關頻率大大高于前者,所以后者在輸出波形的質量方面也高于前者。

(5)dv/dt

NPC方式的輸出電壓跳變臺階為高壓直流母線電壓的一半,對于6kV輸出變頻器而言,為4kV左右。CSML方式輸出電壓跳變臺階為單元的直流母線電壓,不會超過1kV,所以前者比后者的差距也是很明顯的。

(6)系統效率

就變壓器與逆變電路而言,NPC方式與CSML方式效率非常接近。但由于輸出波形質量差異,若采用普通電機,前者必須設置輸出濾波器,后者不必。而濾波器的存在大約會影響效率的0.5%左右。

(7)四象限運行

NPC方式當輸入采用對稱的PWM整流電路時,可以實現四象限運行,可用于軋機、卷揚機等設備;而CSML方式則無法實現四象限運行。只能用于風機、水泵類負載。

(8)冗余設計

NPC方式的冗余設計很難實現,而CSML方式可以方便的采用功率單元旁路技術和冗余功率單元設計方案,大大的有利于提高系統的可靠性。

(9)可維護性

除了可靠性之外,可維護性也是衡量高壓大功率變頻器的優劣的一個重要因素,CSML方式采用模塊化設計,更換功率單元時只要拆除3個交流輸入端子和2個交流輸出端子,以及1個光纖插頭,就可以抽出整個單元,十分方便。而NPC方式就不那么方便了。

總之,三電平電壓形變頻器結構簡單,且可作成四象限運行的變頻器,應用范圍寬。如電壓等級較高時,采用器件直接串聯,帶來均壓問題,且存在輸出諧波和dv/dt等問題,一般要設置輸出濾波器,在電網對諧波失真要求較高時,還要設置輸入濾波器。而多重化PWM電壓型變頻器不存在均壓問題,且在輸入諧波及dv/dt等方面有明顯優勢。對于普通的風機、水泵類一般不要求四象限運行的場合,CSML變頻器有較廣闊的應用前景。這類變頻器又被國內外設計者稱之為完美無諧波變頻器。

我公司的設計人員經過多方探討,綜合各種方案的優缺點,最后選定了完美無諧波變頻器的CSML方案作為我們的最佳選擇,這就是我們向市場推出的JD-BP37和JD-BP38系列的高壓大功率變頻器。

2變頻器的性能特點

(1)變頻器采用多功率單元串聯方案,輸出波形失真小,可配接普通交流電機,無須輸出濾波器。

(2)輸入側采用多重化移相整流技術,電流諧波小,功率因數高。

(3)控制器與功率單元之間的通信用多路并行光纖實現,提高了抗干擾性及可靠性。

(4)控制器中采用一套獨立于高壓源的電源供電系統,有利于整機調試和操作人員的培訓。

(5)采用全中文的Windows彩色液晶顯示觸摸界面。

(6)主電路模塊化設計,安裝、調試、維護方便。

(7)完整的故障監測和報警保護功能。

(8)可選擇現場控制、遠程控制。

(9)內置PID調節器,可開環或閉環運行。

(10)可根據需要打印輸出運行報表。

3工作原理

3.1基本原理

本變頻器為交-直-交型單元串聯多電平電壓源變頻調速器,原理框圖如圖1所示。單元數的多少視電壓高低而定,本處以每相為8單元,共24單元為例。每個功率單元承受全部的電機電流、1/8的相電壓、1/24的輸出功率。24個單元在變壓器上都有自立獨立的三相輸入繞組。功率單元之間及變壓器二次繞組之間相互絕緣。二次繞組采用延邊三角形接法,目的是實現多重化,降低輸入電流的諧波成分。24個二次繞組分成三相位組,互差為20°,以B相為基準,A相8個單元對應的8個二次繞組超前B相20°,C相8個單元對應的8個二次繞組落后B相20°,形成18脈沖整流電路結構。整機原理圖如圖2所示。

3.2功率單元電路

所有單元都有6支二極管實現三相全波整流,有4個IGBT管構成單相逆變電路。功率單元的主電路如圖3所示,4個IGBT管分別用T1、T2、T3、T4表示,它們的門極電壓分別是UG1、UG2、UG3、UG4、

個功率單元的輸出都是一樣的PWM波。功率單元輸出波形如圖4所示。逆變器采用多電平移相PWM技術。同一相的功率單元輸出完全相同的基準電壓(同幅度、同頻率、同相位)。多個單元迭加后的輸出波形如圖5所示。

4.3系統結構與控制

(1)系統結構

整個系統有隔離變壓器、3個變頻柜和1個控制柜組成,參見圖6。

a)隔離變壓器

原邊為星形接法,副邊共有24個獨立的三相繞組,為了適應現場的電網情況,變壓器原邊留有抽頭

b)變頻柜

A、B、C三相分裝在3個柜內,可分別稱為A柜、B柜、C柜

c)控制柜

柜內裝有控制系統,柜前板上裝有控制面板、控制接線排等。由于電壓等級和容量的不同,不同機型的單元的數量不同,面板的布置也會有些不同。

4.4系統控制

整機控制系統有16位單片機擔任主控,24個功率單元都有一個自己的輔助CPU,由8位單片機擔任,此外還有一個CPU,也是8位單片機,負責管理鍵盤和顯示屏。

(1)利用三次諧波補償技術提高了電源電壓利用率。

(2)控制器有一套獨立于高壓電源的供電體系,在不加高壓的情況下,設備各點的波形與加高壓情況相同,這給整機可靠性、調試帶來了很大方便。

(3)系統采用了先進的載波移相技術,它的特點是單元輸出的基波相迭加、諧波彼此相抵消。所以串聯后的總輸出波形失真特別小。

4

本公司分別于2002年8月、10月和2003年3月、4月分別在山東萊蕪鋼鐵股份有限公司煉鐵廠、遼河油田錦州采油廠、浙江永盛化纖有限公司應用了本公司生產的高壓大功率變頻器JD-BP37-630F2臺、JD-BP38-355、JD-BP37-550F各1臺。從運行情況看:

(1)變頻器結構緊湊,安裝簡單

由于變頻器所有部分都裝在柜里,不需要另外的電抗器、濾波器、補償電容、啟動設備等一系列其他裝置,所以體積小,結構緊湊,安裝簡單,現場配線少,調試方便。

(2)電機及機組運行平穩,各項指標滿足工藝要求。

由變頻器拖動的電機均為三相普通的異步電動機,在整個運行范圍內,電機始終運行平穩,溫升正常。風機啟動時的噪音及啟動電流很小,無任何異常震動和噪音。在調速范圍內,軸瓦的最高溫升均在允許的范圍內。

(3)變頻器三相輸出波形完美,非常接近正弦波。

經現場測試,變頻器的三相輸出電壓波形、電流波形非常標準,說明變頻器完全可以控制一般的普通電動機運行,對電機無特殊要求。

(4)變頻器運行情況穩定,性能良好。

該設備投運以來,變頻器運行一直十分穩定。設備運行過程中,我公司技術人員對變頻器輸入變壓器的溫升,功率單元溫升定期巡檢,完全正常。輸出電壓及電流波形正弦度很好,諧波含量極少,效率均高于97%,優于同類進口設備。

(5)運行工況改善,工人勞動強度降低。

變頻器可隨著生產的需要自動調節電動機的轉速,達到最佳效果,工人工作強度大大降低。

(6)變頻器操作簡單,易于掌握及維護。

變頻器的起停,改變運行頻率等操作簡便,操作人員經過半個小時培訓就可以全面掌握。另外,變頻器各種功能齊全,十分完善,提高了設備可靠性,而且節電效果明顯。以山東萊鋼股份有限公司應用的JD-BP37-630F變頻器為例,該系統生產周期大約為1h,出鐵時間為20min,間隔約40min,系統配置電機的額定電流為80A,根據運行情況,及其它生產線的實際運行情況,預計該電機運行電流應在60A,以變頻器上限運行頻率45HZ時,電流為45A,間隔時間運行頻率20HZ時,電流為20A。根據公式測算節能效果達到42.7%。

5結束語

篇8

(1)

式中:n—諧波的次數n=1,3,5……;

a1—開關角,i=1,2,3……N/2;

Ed—變頻器直流側電壓;

N—載波比。

由(1)式可見,各項諧波的幅值為

(2)

令n=1,則得出變頻器輸出電壓的基波幅值為:

(3)

從(1)、(2)、(3)式可以看出,通用變頻器的輸出電壓中確實含有除基波以外的其他諧波。較低次諧波通常對電機負載影響較大,引起轉矩脈動,而較高的諧波又使變頻器輸出電纜的漏電流增加,使電機出力不足,故變頻器輸出的高低次諧波都必須抑制。

如前所述,由于通用變頻器的整流部分采用二極管不可控橋式整流電路,中間濾波部分采用大電容作為濾波器,所以整流器的輸入電流實際上是電容器的充電電流,呈較為陡峻的脈沖波,其諧波分量較大。為了消除諧波,可采用以下對策:

①增加變頻器供電電源內阻抗

通常情況下,電源設備的內阻抗可以起到緩沖變頻器直流濾波電容的無功功率的作用。這種內阻抗就是變壓器的短路阻抗。當電源容量相對變頻器容量越小時,則內阻抗值相對越大,諧波含量越小;電源容量相對變頻器容量越大時,則內阻抗值相對越大,諧波含量越大。對于三菱FR-F540系列變頻器,當電源內阻為4%時,可以起到很好的諧波抑制作用。所以選擇變頻器供電電源變壓器時,最好選擇短路阻抗大的變壓器。

②安裝電抗器

安裝電抗器實際上從外部增加變頻器供電電源的內阻抗。在變頻器的交流側安裝交流電抗器或在變頻器的直流側安裝直流電抗器,或同時安裝,抑制諧波電流。表一列出了三菱FR-A540變頻器安裝電抗器和不安裝電抗器的含量對照表。

③變壓器多相運行

通用變頻器的整流部分是六脈波整流器,所以產生的諧波較大。如果應用變壓器的多相運行,使相位角互差30°如Y-、-組合的兩個變壓器構成相當于12脈波的效果則可減小低次諧波電流28%,起到了很好的諧波抑制作用。

④調節變頻器的載波比

從(1)、(2)、(3)式可以看出,只要載波比足夠大,較低次諧波就可以被有效地抑制,特別是參考波幅值與載波幅值小于1時,13次以下的奇數諧波不再出現。

⑤專用濾波器

該專用濾波器用于檢測變頻器諧波電流的幅值和相位,并產生一個與諧波電流幅值相同且相位正好相反的電流,通到變頻器中,從而可以非常有效地吸收諧波電流。

2負載匹配問題及其對策

生產機械的種類繁多,性能和工藝要求各異,其轉矩特性是復雜的,大體分為三種類型:恒轉矩負載、風機泵類負載和恒功率負載。針對不同的負載類型,應選擇不同類型的變頻器。

①恒轉矩負載

恒轉矩負載是指負載轉矩與轉速無關,任何轉速下,轉矩均保持恒定。恒轉矩負載又分為摩擦類負載和位能式負載。

摩擦類負載的起動轉矩一般要求額定轉矩的150%左右,制動轉矩一般要求額定轉矩的100%左右,所以變頻器應選擇那些具有恒定轉矩特性,并且起動和制動轉矩都比較大,過載時間長和過載能力大的變頻器。如三菱變頻器FR-A540系列。

位能式負載一般要求大的起動轉矩和能量回饋功能,能夠快速實現正反轉,變頻器應選擇具有四象限運行能力的變頻器。如三菱變頻器FR-A241系列。

②風機泵類負載

風機泵類負載是目前工業現場應用最多的設備,雖然泵和風機的特性多種多樣,但是主要以離心泵和離心風機應用為主,通用變頻器在這類負載上的應用最多。風機泵類負載是一種平方轉矩負載,其轉速n與流量Q,轉矩T與泵的軸功率N有如下關系式:

(4)

這類負載對變頻器的性能要求不高,只要求經濟性和可靠性,所以選擇具有U/f=const控制模式的變頻器即可。如三菱變頻器FR-F540(L)系列。風機負載在實際運行過程中,由于轉動慣量比較大,所以變頻器的加速時間和減速時間是一個非常重要的問題,可按下列公式進行計算:

(5)

(6)

式中:tACC—加速時間(s);

tDEC—減速時間(s);

GD2—折算到電機軸上的轉動慣量(N·m2);

g—重力加速度,g=9.81(m/s2);

TM—電動機的電磁轉矩(N.m);

TL—負載轉矩(N.m);

nAS—系統加速時的初始速度(r/min);

nAE—系統加速時的終止速度(r/min);

nDS—系統減速時的初始速度(r/min);

nDE—系統減速時的終止速度(r/min)。

從上式可以看出,風機負載的系統轉動慣量計算是非常重要的。變頻器具體設計時,按上式計算結果,進行適當修正,在變頻器起動時不發生過流跳閘和變頻器減速時不發生過電壓跳閘的情況下,選擇最短時間。

泵類負載在實際運行過程中,容易發生喘振、憋壓和水垂效應,所以變頻器選型時,要選擇適于泵類負載的變頻器且變頻器在功能設定時要針對上述問題進行單獨設定:

喘振:測量易發生喘振的頻率點,通過設定跳躍頻率點和寬度,避免系統發生共振現象。

憋壓:泵類負載在低速運行時,由于系統憋壓而導致流量為零,從而造成泵燒壞。在變頻器功能設定時,通過限定變頻器的最低頻率,而限定了泵流量的臨界點處的系統最低轉速,這就避免了此類現象的發生。

水垂效應:泵類負載在突然斷電時,由于泵管道中的液體重力而倒流。若逆止閥不嚴或沒有逆止閥,將導致電機反轉,因電機發電而使變頻器發生故障報警燒壞。在變頻器系統設計時,應使變頻器按減速曲線停止,在電機完全停止后再斷開主電路電,或者設定“斷電減速停止”功能,這樣就避免了該現象的發生。

③恒功率負載

恒功率負載是指轉矩大體與轉速成反比的負載,如卷取機、開卷機等。利用變頻器驅動恒功率負載時,應該是就一定的速度變化范圍而言的,通常考慮在某個轉速點以下采用恒轉矩調速方式,而在高于該轉速點時才采用恒功率調速方式。我們通常將該轉速點稱為基頻,該點對應的電壓為變頻器輸出額定電壓。從理論上講,要想實現真正意義上的恒功率控制,變頻器的輸出頻率f和輸出電壓U必須遵循U2/f=const協調控制,但這在實際變頻器運行過程中是不允許的,因為在基頻以上,變頻器的輸出電壓不能隨著其輸出頻率增加,只能保持額定電壓,所以只能是一種近似意義上的恒功率控制。

3發熱問題及其對策

變頻器的發熱是由內部的損耗產生的。在變頻器中各部分損耗中主要以主電路為主,約占98%,控制電路占2%。為了保證變頻器正常可靠運行,必須對變頻器進行散熱,通常采用以下方法:

①采用風扇散熱:變頻器的內裝風扇可將變頻器的箱體內部散熱帶走,若風扇不能正常工作,應立即停止變頻器運行。

②降低安裝環境溫度:由于變頻器是電子裝置,內含電子元、電解電容等,所以溫度對其壽命影響比較大。通用變頻器的環境運行溫度一般要求-10℃~-50℃,如果能夠采取措施盡可能降低變頻器運行溫度,那么變頻器的使用壽命就延長,性能也比較穩定。

我們采取兩種方法:一種方法是建造單獨的變頻器低壓間,內部安裝空調,保持低壓間溫度在+15℃~+20℃之間。另一種方法是變頻器的安裝空間要滿足變頻器使用說明書的要求。

以上所談到的變頻器發熱是指變頻器在額定范圍之內正常運行的損耗。當變頻器發生非正常運行(如過流,過壓,過載等)產生的損耗必須通過正常的選型來避免此類現象的發生。

對于風機泵類負載,當我們選擇三菱變頻器FR-F540時,其過載能為120%/60秒,其過載周期為300秒,也就是說,當變頻器相對于其額定負載的120%過載時,其持續時間為60秒,并且在300秒之內不允許出現第二次過載。當變頻器出現過載時,功率單元因其流過的過載電流而升溫,導致變頻器過熱,這時必須盡快使其降溫以使變頻器的過熱保護動作消除,這個冷卻過程就是變頻器的過載周期。不同的變頻器,其過載倍數、過載時間和過載周期均不相同,并且其過載倍數越大,過載時間越短,請見表2所示:

對于變頻器所驅動的電機,按其工作情況可分為兩類:長期工作制和重復短時工作制。長期工作制的電機可以按其名牌規定的數據長期運行。針對該類負載,變頻器可根據電機銘牌數據進行選型,如連續運行的油泵,若其電機功率為22kW時,可選擇FR-F540-22k變頻器即可。重復短時工作制電機,其特點是重復性和短時性,即電機的工作時間和停歇時間交替進行,而且都比較短,二者之和,按國家規定不得超過60秒。重復短時工作制電機允許其過載且有一定的溫升。此時,若根據電機銘牌數據來選擇變頻器,勢必造成變頻器的損壞。針對該類負載,變頻器在參考電機銘牌數據的情況下要根據電機負載圖和變頻器的過載倍數、過載時間、過載周期來選型。如重復短時運行的升降機,其電機功率為18.5kW,可選擇FR-A540-22k變頻器。

4結論

本文通過對通用變頻器運行過程中存在問題的分析,提出了解決這些問題的實際對策,隨著新技術和新理論不斷在變頻器上的應用,變頻器存在的這些問題有望通過變頻器本身的功能和補償來解決。隨著工業現場和社會環境對變頻器的要求不斷提高,滿足實際需要的真正“綠色”變頻器也會不久面世。

5參考文獻

(1)韓安榮.通用變頻器及其應用.北京:機械工業出版社,2000

(2)三菱變頻調速器FR-A500使用手冊.

篇9

Abstract:Thispaperanalyzedtheproblemofharmonicwave,matchingofloadand

calorificationforinvertersinrunning,andmadetherelativelythemeasure.

Keywords:inverterharmonicwaveloadingcalorification

1前言

自80年代通用變頻器進入中國市場以來,在短短的十幾年時間里得到了非常廣泛的應用。目前,通用變頻器以其智能化、數字化、網絡化等優點越來越受到人們的青睞。隨著通用變頻器應用范圍的擴大,暴露出來的問題也越來越多,主要有以下幾方面:

①諧波問題

②變頻器負載匹配問題

③發熱問題

以上這些問題已經引起了有關管理部門和廠礦的注意并制定了相關的技術標準。如諧波問題,我國于1984年和1993年通過了“電力系統諧波管理暫行規定”及GB/T-14549-93標準,用以限制供電系統及用電設備的諧波污染。針對上述問題,本文進行了分析并提出了解決方案及對策。

2諧波問題及其對策

通用變頻器的主電路形式一般由三部分組成:整流部分、逆變部分和濾波部分。整流部分為三相橋式不可控整流器,逆變器部分為IGBT三相橋式逆變器,且輸出為PWM波形。對于雙極性調制的變頻器,其輸出電壓波形展開式為:

(1)

式中:n—諧波的次數n=1,3,5……;

a1—開關角,i=1,2,3……N/2;

Ed—變頻器直流側電壓;

N—載波比。

由(1)式可見,各項諧波的幅值為

(2)

令n=1,則得出變頻器輸出電壓的基波幅值為:

(3)

從(1)、(2)、(3)式可以看出,通用變頻器的輸出電壓中確實含有除基波以外的其他諧波。較低次諧波通常對電機負載影響較大,引起轉矩脈動,而較高的諧波又使變頻器輸出電纜的漏電流增加,使電機出力不足,故變頻器輸出的高低次諧波都必須抑制。

如前所述,由于通用變頻器的整流部分采用二極管不可控橋式整流電路,中間濾波部分采用大電容作為濾波器,所以整流器的輸入電流實際上是電容器的充電電流,呈較為陡峻的脈沖波,其諧波分量較大。為了消除諧波,可采用以下對策:

①增加變頻器供電電源內阻抗

通常情況下,電源設備的內阻抗可以起到緩沖變頻器直流濾波電容的無功功率的作用。這種內阻抗就是變壓器的短路阻抗。當電源容量相對變頻器容量越小時,則內阻抗值相對越大,諧波含量越小;電源容量相對變頻器容量越大時,則內阻抗值相對越大,諧波含量越大。對于三菱FR-F540系列變頻器,當電源內阻為4%時,可以起到很好的諧波抑制作用。所以選擇變頻器供電電源變壓器時,最好選擇短路阻抗大的變壓器。

②安裝電抗器

安裝電抗器實際上從外部增加變頻器供電電源的內阻抗。在變頻器的交流側安裝交流電抗器或在變頻器的直流側安裝直流電抗器,或同時安裝,抑制諧波電流。表一列出了三菱FR-A540變頻器安裝電抗器和不安裝電抗器的含量對照表。

③變壓器多相運行

通用變頻器的整流部分是六脈波整流器,所以產生的諧波較大。如果應用變壓器的多相運行,使相位角互差30°如Y-、-組合的兩個變壓器構成相當于12脈波的效果則可減小低次諧波電流28%,起到了很好的諧波抑制作用。

④調節變頻器的載波比

從(1)、(2)、(3)式可以看出,只要載波比足夠大,較低次諧波就可以被有效地抑制,特別是參考波幅值與載波幅值小于1時,13次以下的奇數諧波不再出現。

⑤專用濾波器

該專用濾波器用于檢測變頻器諧波電流的幅值和相位,并產生一個與諧波電流幅值相同且相位正好相反的電流,通到變頻器中,從而可以非常有效地吸收諧波電流。

3負載匹配問題及其對策

生產機械的種類繁多,性能和工藝要求各異,其轉矩特性是復雜的,大體分為三種類型:恒轉矩負載、風機泵類負載和恒功率負載。針對不同的負載類型,應選擇不同類型的變頻器。

①恒轉矩負載

恒轉矩負載是指負載轉矩與轉速無關,任何轉速下,轉矩均保持恒定。恒轉矩負載又分為摩擦類負載和位能式負載。

摩擦類負載的起動轉矩一般要求額定轉矩的150%左右,制動轉矩一般要求額定轉矩的100%左右,所以變頻器應選擇那些具有恒定轉矩特性,并且起動和制動轉矩都比較大,過載時間長和過載能力大的變頻器。如三菱變頻器FR-A540系列。

位能式負載一般要求大的起動轉矩和能量回饋功能,能夠快速實現正反轉,變頻器應選擇具有四象限運行能力的變頻器。如三菱變頻器FR-A241系列。

②風機泵類負載

風機泵類負載是目前工業現場應用最多的設備,雖然泵和風機的特性多種多樣,但是主要以離心泵和離心風機應用為主,通用變頻器在這類負載上的應用最多。風機泵類負載是一種平方轉矩負載,其轉速n與流量Q,轉矩T與泵的軸功率N有如下關系式:

(4)

這類負載對變頻器的性能要求不高,只要求經濟性和可靠性,所以選擇具有U/f=const控制模式的變頻器即可。如三菱變頻器FR-F540(L)系列。風機負載在實際運行過程中,由于轉動慣量比較大,所以變頻器的加速時間和減速時間是一個非常重要的問題,可按下列公式進行計算:

(5)

(6)

式中:tACC—加速時間(s);

tDEC—減速時間(s);

GD2—折算到電機軸上的轉動慣量(N·m2);

g—重力加速度,g=9.81(m/s2);

TM—電動機的電磁轉矩(N.m);

TL—負載轉矩(N.m);

nAS—系統加速時的初始速度(r/min);

nAE—系統加速時的終止速度(r/min);

nDS—系統減速時的初始速度(r/min);

nDE—系統減速時的終止速度(r/min)。

從上式可以看出,風機負載的系統轉動慣量計算是非常重要的。變頻器具體設計時,按上式計算結果,進行適當修正,在變頻器起動時不發生過流跳閘和變頻器減速時不發生過電壓跳閘的情況下,選擇最短時間。

泵類負載在實際運行過程中,容易發生喘振、憋壓和水垂效應,所以變頻器選型時,要選擇適于泵類負載的變頻器且變頻器在功能設定時要針對上述問題進行單獨設定:

喘振:測量易發生喘振的頻率點,通過設定跳躍頻率點和寬度,避免系統發生共振現象。

憋壓:泵類負載在低速運行時,由于系統憋壓而導致流量為零,從而造成泵燒壞。在變頻器功能設定時,通過限定變頻器的最低頻率,而限定了泵流量的臨界點處的系統最低轉速,這就避免了此類現象的發生。

水垂效應:泵類負載在突然斷電時,由于泵管道中的液體重力而倒流。若逆止閥不嚴或沒有逆止閥,將導致電機反轉,因電機發電而使變頻器發生故障報警燒壞。在變頻器系統設計時,應使變頻器按減速曲線停止,在電機完全停止后再斷開主電路電,或者設定“斷電減速停止”功能,這樣就避免了該現象的發生。

③恒功率負載

恒功率負載是指轉矩大體與轉速成反比的負載,如卷取機、開卷機等。利用變頻器驅動恒功率負載時,應該是就一定的速度變化范圍而言的,通常考慮在某個轉速點以下采用恒轉矩調速方式,而在高于該轉速點時才采用恒功率調速方式。我們通常將該轉速點稱為基頻,該點對應的電壓為變頻器輸出額定電壓。從理論上講,要想實現真正意義上的恒功率控制,變頻器的輸出頻率f和輸出電壓U必須遵循U2/f=const協調控制,但這在實際變頻器運行過程中是不允許的,因為在基頻以上,變頻器的輸出電壓不能隨著其輸出頻率增加,只能保持額定電壓,所以只能是一種近似意義上的恒功率控制。

4發熱問題及其對策

變頻器的發熱是由內部的損耗產生的。在變頻器中各部分損耗中主要以主電路為主,約占98%,控制電路占2%。為了保證變頻器正常可靠運行,必須對變頻器進行散熱,通常采用以下方法:

①采用風扇散熱:變頻器的內裝風扇可將變頻器的箱體內部散熱帶走,若風扇不能正常工作,應立即停止變頻器運行。

②降低安裝環境溫度:由于變頻器是電子裝置,內含電子元、電解電容等,所以溫度對其壽命影響比較大。通用變頻器的環境運行溫度一般要求-10℃~-50℃,如果能夠采取措施盡可能降低變頻器運行溫度,那么變頻器的使用壽命就延長,性能也比較穩定。

我們采取兩種方法:一種方法是建造單獨的變頻器低壓間,內部安裝空調,保持低壓間溫度在+15℃~+20℃之間。另一種方法是變頻器的安裝空間要滿足變頻器使用說明書的要求。

以上所談到的變頻器發熱是指變頻器在額定范圍之內正常運行的損耗。當變頻器發生非正常運行(如過流,過壓,過載等)產生的損耗必須通過正常的選型來避免此類現象的發生。

對于風機泵類負載,當我們選擇三菱變頻器FR-F540時,其過載能為120%/60秒,其過載周期為300秒,也就是說,當變頻器相對于其額定負載的120%過載時,其持續時間為60秒,并且在300秒之內不允許出現第二次過載。當變頻器出現過載時,功率單元因其流過的過載電流而升溫,導致變頻器過熱,這時必須盡快使其降溫以使變頻器的過熱保護動作消除,這個冷卻過程就是變頻器的過載周期。不同的變頻器,其過載倍數、過載時間和過載周期均不相同,并且其過載倍數越大,過載時間越短,請見表2所示:

對于變頻器所驅動的電機,按其工作情況可分為兩類:長期工作制和重復短時工作制。長期工作制的電機可以按其名牌規定的數據長期運行。針對該類負載,變頻器可根據電機銘牌數據進行選型,如連續運行的油泵,若其電機功率為22kW時,可選擇FR-F540-22k變頻器即可。重復短時工作制電機,其特點是重復性和短時性,即電機的工作時間和停歇時間交替進行,而且都比較短,二者之和,按國家規定不得超過60秒。重復短時工作制電機允許其過載且有一定的溫升。此時,若根據電機銘牌數據來選擇變頻器,勢必造成變頻器的損壞。針對該類負載,變頻器在參考電機銘牌數據的情況下要根據電機負載圖和變頻器的過載倍數、過載時間、過載周期來選型。如重復短時運行的升降機,其電機功率為18.5kW,可選擇FR-A540-22k變頻器。

5結論

本文通過對通用變頻器運行過程中存在問題的分析,提出了解決這些問題的實際對策,隨著新技術和新理論不斷在變頻器上的應用,變頻器存在的這些問題有望通過變頻器本身的功能和補償來解決。隨著工業現場和社會環境對變頻器的要求不斷提高,滿足實際需要的真正“綠色”變頻器也會不久面世。

6參考文獻

篇10

Abstract:Theapplicationoftheinvertersintheindustrialproductionisbecomingmoreand

moreuniversal,anditsinterfaceisbeingpaidmuchattention.Thesourceandspreadingrouteinthe

applicationsystemoftheinverterareintroducedinthispaper,somepracticalresolventsareputforward,andtheconcretemeasuresinthesystemdesignandinstallmentareexpounded.

Keywords:InverterInterfaceRestrain

[中圖分類號]TN973[文獻標識碼]B文章編號1561-0330(2003)06-00

1引言

變頻器調速技術是集自動控制、微電子、電力電子、通信等技術于一體的高科技技術。它以很好的調速、節能性能,在各行各業中獲得了廣泛的應用。由于其采用軟啟動,可以減少設備和電機的機械沖擊,延長設備和電機的使用壽命。隨著科學技術的高速發展,變頻器以其具有節電、節能、可靠、高效的特性應用到了工業控制的各個領域中,如變頻調速在供水、空調設備、過程控制、電梯、機床等方面的應用,保證了調節精度,減輕了工人的勞動強度,提高了經濟效益,但隨之也帶來了一些干擾問題。現場的供電和用電設備會對變頻器產生影響,變頻器運行時產生的高次諧波也會干擾周圍設備的運行。變頻器產生的干擾主要有三種:對電子設備的干擾、對通信設備的干擾及對無線電等產生的干擾。對計算機和自動控制裝置等電子設備產生的干擾主要是感應干擾;對通信設備和無線電等產生的干擾為放射干擾。如果變頻器的干擾問題解決不好,不但系統無法可靠運行,還會影響其他電子、電氣設備的正常工作。因此有必要對變頻器應用系統中的干擾問題進行探討,以促進其進一步的推廣應用。下面主要討論變頻器的干擾及其抑制方法。

2變頻調速系統的主要電磁干擾源及途徑

2.1主要電磁干擾源

電磁干擾也稱電磁騷擾(EMI),是以外部噪聲和無用信號在接收中所造成的電磁干擾,通常是通過電路傳導和以場的形式傳播的。變頻器的整流橋對電網來說是非線性負載,它所產生的諧波會對同一電網的其他電子、電氣設備產生諧波干擾。另外,變頻器的逆變器大多采用PWM技術,當其工作于開關模式并作高速切換時,產生大量耦合性噪聲。因此,變頻器對系統內其他的電子、電氣設備來說是一個電磁干擾源。另一方面,電網中的諧波干擾主要通過變頻器的供電電源干擾變頻器。電網中存在大量諧波源,如各種整流設備、交直流互換設備、電子電壓調整設備、非線性負載及照明設備等。這些負荷都使電網中的電壓、電流產生波形畸變,從而對電網中其他設備產生危害的干擾。變頻器的供電電源受到來自被污染的交流電網的干擾后,若不加以處理,電網噪聲就會通過電網電源電路干擾變頻器。供電電源對變頻器的干擾主要有過壓、欠壓、瞬時掉電;浪涌、跌落;尖峰電壓脈沖;射頻干擾。其次,共模干擾通過變頻器的控制信號線也會干擾變頻器的正常工作。

2.2電磁干擾的途徑

變頻器能產生功率較大的諧波,對系統其他設備干擾性較強。其干擾途徑與一般電磁干擾途徑是一致的,主要分電磁輻射、傳導、感應耦合。具體為:①對周圍的電子、電氣設備產生電磁輻射;②對直接驅動的電動機產生電磁噪聲,使得電動機鐵耗和銅耗增加,并傳導干擾到電源,通過配電網絡傳導給系統其他設備;③變頻器對相鄰的其他線路產生感應耦合,感應出干擾電壓或電流。同樣,系統內的干擾信號通過相同的途徑干擾變頻器的正常工作。下面分別加以分析。

(1)電磁輻射

變頻器如果不是處在一個全封閉的金屬外殼內,它就可以通過空間向外輻射電磁波。其輻射場強取決于干擾源的電流強度、裝置的等效輻射阻抗以及干擾源的發射頻率。變頻器的整流橋對電網來說是非線性負載,它所產生的諧波對接入同一電網的其它電子、電氣設備產生諧波干擾。變頻器的逆變橋大多采用PWM技術,當根據給定頻率和幅值指令產生預期的和重復的開關模式時,其輸出的電壓和電流的功率譜是離散的,并且帶有與開關頻率相應的高次諧波群。高載波頻率和場控開關器件的高速切換(dv/dt可達1kV/μs以上)所引起的輻射干擾問題相當突出。

當變頻器的金屬外殼帶有縫隙或孔洞,則輻射強度與干擾信號的波長有關,當孔洞的大小與電磁波的波長接近時,會形成干擾輻射源向四周輻射。而輻射場中的金屬物體還可能形成二次輻射。同樣,變頻器外部的輻射也會干擾變頻器的正常工作。

(2)傳導

上述的電磁干擾除了通過與其相連的導線向外部發射,也可以通過阻抗耦合或接地回路耦合將干擾帶入其它電路。與輻射干擾相比,其傳播的路程可以很遠。比較典型的傳播途徑是:接自工業低壓網絡的變頻器所產生的干擾信號將沿著配電變壓器進入中壓網絡,并沿著其它的配電變壓器最終又進入民用低壓配電網絡,使接自民用配電母線的電氣設備成為遠程的受害者。

(3)感應耦合

感應耦合是介于輻射與傳導之間的第三條傳播途徑。當干擾源的頻率較低時,干擾的電磁波輻射能力相當有限,而該干擾源又不直接與其它導體連接,但此時的電磁干擾能量可以通過變頻器的輸入、輸出導線與其相鄰的其他導線或導體產生感應耦合,在鄰近導線或導體內感應出干擾電流或電壓。感應耦合可以由導體間的電容耦合的形式出現,也可以由電感耦合的形式或電容、電感混合的形式出現,這與干擾源的頻率以及與相鄰導體的距離等因素有關。

3抗電磁干擾的措施

據電磁性的基本原理,形成電磁干擾(EMI)須具備電磁干擾源、電磁干擾途徑、對電磁干擾敏感的系統等三個要素。為防止干擾,可采用硬件和軟件的抗干擾措施。其中,硬件抗干擾是最基本和最重要的抗干擾措施,一般從抗和防兩方面入手來抑制干擾,其總原則是抑制和消除干擾源、切斷干擾對系統的耦合通道、降低系統對干擾信號的敏感性。具體措施在工程上可采用隔離、濾波、屏蔽、接地等方法。

(1)隔離

所謂干擾的隔離是指從電路上把干擾源和易受干擾的部分隔離開來,使它們不發生電的聯系。在變頻調速傳動系統中,通常是在電源和放大器電路之間的電源線上采用隔離變壓器以免傳導干擾,電源隔離變壓器可應用噪聲隔離變壓器。

(2)濾波

設置濾波器的作用是為了抑制干擾信號從變頻器通過電源線傳導干擾到電源及電動機。為減少電磁噪聲和損耗,在變頻器輸出側可設置輸出濾波器。為減少對電源的干擾,可在變頻器輸入側設置輸入濾波器。若線路中有敏感電子設備,可在電源線上設置電源噪聲濾波器,以免傳導干擾。

(3)屏蔽

屏蔽干擾源是抑制干擾的最有效的方法。通常變頻器本身用鐵殼屏蔽,不讓其電磁干擾泄漏。輸出線最好用鋼管屏蔽,特別是以外部信號控制變頻器時,要求信號線盡可能短(一般為20m以內),且信號線采用雙芯屏蔽,并與主電路及控制回路完全分離,不能放于同一配管或線槽內,周圍電子敏感設備線路也要求屏蔽。為使屏蔽有效,屏蔽罩必須可靠接地。

(4)接地

實踐證明,接地往往是抑制噪聲和防止干擾的重要手段。良好的接地方式可在很大程度上抑制內部噪聲的耦合,防止外部干擾的侵入,提高系統的抗干擾能力。變頻器的接地方式有多點接地、一點接地及經母線接地等幾種形式,要根據具體情況采用,要注意不要因為接地不良而對設備產生干擾。

單點接地指在一個電路或裝置中,只有一個物理點定義為接地點。在低頻下的性能好;多點接地是指裝置中的各個接地點都直接接到距它最近的接地點。在高頻下的性能好;混合接地是根據信號頻率和接地線長度,系統采用單點接地和多點接地共用的方式。變頻器本身有專用接地端子PE端,從安全和降低噪聲的需要出發,必須接地。既不能將地線接在電器設備的外殼上,也不能接在零線上。可用較粗的短線一端接到接地端子PE端,另一端與接地極相連,接地電阻取值<100Ω,接地線長度在20m以內,并注意合理選擇接地極的位置。當系統的抗干擾能力要求較高時,為減少對電源的干擾,在電源輸入端可加裝電源濾波器。為抑制變頻器輸入側的諧波電流,改善功率因數,可在變頻器輸入端加裝交流電抗器,選用與否可視電源變壓器與變頻器容量的匹配情況及電網允許的畸變程度而定,一般情況下采用為好。為改善變頻器輸出電流,減少電動機噪聲,可在變頻器輸出端加裝交流電抗器。圖1為一般變頻調速傳動系統抗干擾所采取措施。

(5)正確安裝

由于變頻器屬于精密的功率電力電子產品,其現場安裝工藝的好壞也影響著變頻器的正常工作。正確的安裝可以確保變頻器安全和無故障運行。變頻器對安裝環境要求較高。一般變頻器使用手冊規定溫度范圍為最低溫度-10℃,最高溫度不超過50℃;變頻器的安裝海拔高度應小于1000m,超過此規定應降容使用;變頻器不能安裝在經常發生振動的地方,對振動沖擊較大的場合,應采用加橡膠墊等防振措施;不能安裝在電磁干擾源附近;不能安裝在有灰塵、腐蝕性氣體等空氣污染的環境;不能安裝在潮濕環境中,如潮濕管道下面,應盡量采用密封柜式結構,并且要確保變頻器通風暢通,確保控制柜有足夠的冷卻風量,其典型的損耗數一般按變頻器功率的3%來計算柜中允許的溫升值。安裝工藝要求如下:

①確保控制柜中的所有設備接地良好,應該使用短、粗的接地線(最好采用扁平導體或金屬網,因其在高頻時阻抗較低)連接到公共地線上。按國家標準規定,其接地電阻應小于4歐姆。另外與變頻器相連的控制設備(如PLC或PID控制儀)要與其共地。

②安裝布線時將電源線和控制電纜分開,例如使用獨立的線槽等。如果控制電路連接線必須和電源電纜交叉,應成90°交叉布線。

③使用屏蔽導線或雙絞線連接控制電路時,確保未屏蔽之處盡可能短,條件允許時應采用電纜套管。

④確保控制柜中的接觸器有滅弧功能,交流接觸器采用R-C抑制器,也可采用壓敏電阻抑制器,如果接觸器是通過變頻器的繼電器控制的,這一點特別重要。

⑤用屏蔽和鎧裝電纜作為電機接線時,要將屏蔽層雙端接地。

⑥如果變頻器運行在對噪聲敏感的環境中,可以采用RFI濾波器減小來自變頻器的傳導和輻射干擾。為達到最優效果,濾波器與安裝金屬板之間應有良好的導電性。

4變頻控制系統設計中應注意的其他問題

除了前面討論的幾點以外,在變頻器控制系統設計與應用中還要注意以下幾個方面的問題。

(1)在設備排列布置時,應該注意將變頻器單獨布置,盡量減少可能產生的電磁輻射干擾。在實際工程中,由于受到房屋面積的限制往往不可能有單獨布置的位置,應盡量將容易受干擾的弱電控制設備與變頻器分開,比如將動力配電柜放在變頻器與控制設備之間。

(2)變頻器電源輸入側可采用容量適宜的空氣開關作為短路保護,但切記不可頻繁操作。由于變頻器內部有大電容,其放電過程較為緩慢,頻繁操作將造成過電壓而損壞內部元件。

(3)控制變頻調速電機啟/停通常由變頻器自帶的控制功能來實現,不要通過接觸器實現啟/停。否則,頻繁的操作可能損壞內部元件。

(4)盡量減少變頻器與控制系統不必要的連線,以避免傳導干擾。除了控制系統與變頻器之間必須的控制線外,其它如控制電源等應分開。由于控制系統及變頻器均需要24V直流電源,而生產廠家為了節省一個直流電源,往往用一個直流電源分兩路分別對兩個系統供電,有時變頻器會通過直流電源對控制系統產生傳導干擾,所以在設計中或訂貨時要特別加以說明,要求用兩個直流電源分別對兩個系統供電。

(5)注意變頻器對電網的干擾。變頻器在運行時產生的高次諧波會對電網產生影響,使電網波型嚴重畸變,可能造成電網電壓降很大、電網功率因數很低,大功率變頻器應特別注意。解決的方法主要有采用無功自動補償裝置以調節功率因數,同時可以根據具體情況在變頻器電源進線側加電抗器以減少對電網產生的影響,而進線電抗器可以由變頻器供應商配套提供,但在訂貨時要加以說明。

(6)變頻器柜內除本機專用的空氣開關外,不宜安置其它操作性開關電器,以免開關噪聲入侵變頻器,造成誤動作。

(7)應注意限制最低轉速。在低轉速時,電機噪聲增大,電機冷卻能力下降,若負載轉矩較大或滿載,可能燒毀電機。確需低速運轉的高負荷變頻電機,應考慮加大額定功率,或增加輔助的強風冷卻。

(8)注意防止發生共振現象。由于定子電流中含有高次諧波成分,電機轉矩中含有脈動分量,有可能造成電機的振動與機械振動產生共振,使設備出現故障。應在預先找到負載固有的共振頻率后,利用變頻器頻率跳躍功能設置,躲開共振頻率點。

5結束語

以上通過對變頻器運行過程中存在的干擾問題的分析,提出了解決這些問題的實際方法。隨著新技術和新理論不斷在變頻器上的應用,變頻器應用存在的這些問題有望通過變頻器本身的功能和補償來解決。隨著工業現場和社會環境對變頻器的要求不斷提高,滿足實際需要的真正“綠色”變頻器不久也會面世。

參考文獻

[1]韓安榮.通用變頻器及其應用(第2版)[M].北京:機械工業出版社,2000

[2]吳忠智,吳加林,變頻器應用手冊[Z].北京:機械工業出版社,1995

[3]王定華等.電磁兼容性原理與設計[M].四川:電子科技大學出版社,1995

主站蜘蛛池模板: 河曲县| 溧水县| 洪泽县| 汤阴县| 本溪| 甘孜县| 威海市| 林周县| 东山县| 罗平县| 连江县| 疏附县| 瓦房店市| 金门县| 剑川县| 阳信县| 新宾| 敦化市| 桓台县| 宣化县| 衡阳县| 疏勒县| 广河县| 方山县| 郧西县| 雅江县| 荆门市| 岑巩县| 广河县| 丹棱县| 青河县| 麻江县| 阿尔山市| 许昌市| 大英县| 任丘市| 浮山县| 赣州市| 郧西县| 铜陵市| 安徽省|