時間:2023-03-20 16:26:32
導言:作為寫作愛好者,不可錯過為您精心挑選的10篇建筑結構設計論文,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。
關鍵詞建筑表達結構設計安全建筑情感爭議結構設計實踐
■前言
一段時間以來,由法國巴黎戴高樂機場2E侯機廳通道部分倒塌事故引起的對結構安全問題的討論成為業界甚至各種傳媒的熱門話題,由之引起的對國家大劇院以及各奧運在建項目進行結構安全再認識的聲音也不時傳起。特別是對正在設計施工中的奧運項目,按照政府決策部門的意見,建設單位組織結構有關專家逐個項目地進行了更為嚴格的結構設計安全評估。
結構設計安全是我們所有從事結構設計與研究工作者必須面對和回答的問題,巴黎戴高樂機場事故是結構在其設計使用壽命初期(投入運營一年),在常規荷載作用(沒有恐怖襲擊、沒有惡劣的區域突發自然災害)的情況下發生的,就是說,一定是在結構設計或施工的某個環節給結構留下了致命的內部缺陷才造成的,這一缺陷既可能是結構設計理論方面的,也可能是結構設計構造方面的,既可能是結構材料使用方面的,還可能是建造過程中的施工質量控制方面的,等等。無論什么原因,這種結構破壞形態都是結構設計原則所不允許的,引起我們的警覺也是應該的。
另一方面,我們也還是應該理性地、科學地、全面地分析和把握結構設計的安全問題。其實,追溯人類改造自然、改造世界的歷史足跡,我們還是有理由對當代結構設計理論和建造技術的發展水平感到自豪的。雖然我們現在感覺是越來越累,越來越難,但是在力學和材料科學發展的有力支撐下,我們所從事的結構設計與建造技術的發展還是基本上滿足了那些滿腦子求新求奇,求高求廣的所謂當代建筑師的表達欲望與需求的。
■世界上沒有自由的結構設計師,但假如沒有我們,也就沒有建筑表達的自由
建筑師設計東西,無非表達兩種需求,一種是傳統意義上的功能需求,另外一種就是表達建筑情感,或者說是通過建筑表達情感。這種情感表達方面的需求可能是來自公眾的,也可能是來自政府或領導意志的,還可能就是直接來自建筑師的美學修為的。建筑師可以利用建筑特有的元素,比如建筑材料的材質、裝飾材料的色彩等進行其建筑情感的表達,但是這種表達的效果和能力是有限的,建筑師更重要的手段則是借助結構的能力完成這一表達需求,從這個意義上說,建筑師豐富的想象力既給結構設計提出了課題、帶來了挑戰,同時也就給結構工程師帶來了風險。
國家大劇院超大超深的地下結構體量,橢球拋物面殼體屋頂和圍繞殼體的環形水池都是安得魯實現其劇院功能需求與其情感表達需求的手法和元素。為了在不超越人民大會堂的限定高度內,完成劇場功能對豎向尺度的需求,“深入地下”是其自然的(也許是無奈的)選擇;橢球拋物面殼體屋頂罩住其下的三個功能劇場是建筑師進行區域空間整和的一種手段,在這塊區域上的建筑物進行這樣的整和處理我認為是必要的;建筑師設置環形水池的目的在于其制造區域寧靜氣氛的需要,這種建筑情感表達上的需求也是必要的。
國家大劇院總平面圖
同樣的,在建的國家體育場(簡稱“鳥巢”)以及國家游泳中心(簡稱“水立方”)等標志性建筑,她們不單單是承載著滿足舉辦奧運會各單項體育功能方面的需求,也還要承載著通過其“別樣”的建筑形象來表達全國人民百年奧運夢想成真的情感需求,承載著要為最出色的一屆奧運會留下最出色的“建筑遺產”的使命。
自然的,建筑師是無法單獨承擔這樣的使命的,必須依靠結構工程師的支持來實現其“特別”的表達需求。或者說,結構工程師在這個時侯是沒有選擇的自由的,只有絞盡腦汁為建筑師的這種需求尋找“解決方案”,于是,百年之前的理論物理學命題“泡沫理論”被結構師拿來經過有趣的數學變換,最終成了表達建筑師“看似無序的水分子結構”的最好載體。
國家游泳中心總平面圖
■建筑結構形式的爭議多半不是“好與不好”的問題,而是“值與不值”的問題
為了滿足建筑師們的“浪漫”需求,在傳統的結構構成方式無能為力的時候,結構設計師就必須探索新的、非傳統的結構構成方式。結構系統的基本形式,可以說已經被我們認識的差不多了,但是,這種說法只是限于基本體系,并不意味著創造新的結構形態可能性的減少,在擁有無限多樣的物種的豐富多彩的世界里,限定結構形態的類型顯然是不恰當的。
結構工程師的任務就是在既要保證結構安全同時又要滿足建筑美學需求的杠桿上尋找一個平衡點。只是,世界上終究沒有免費的午餐,當各種或是張揚的、或是陌生的結構形態出現的時候,在結構材料科學還沒有長足的發展的時候,在我們還不得不用傳統的結構材料去實現這樣一個個“浪漫”的需求的時候,對結構安全的關注也就從來沒有象現在這樣引起一端又一端的“爭議”。
從一個結構設計與研究工作者的角度看待這些“爭議”,我認為很多時候我們是可以在力學或規范的原則內尋找到這個“平衡點”的,隨后的問題是,這會要我們付出多大的“代價”,或者說要我們支付多大的“結構成本”?我認為對這個我們要支付的成本“值與不值”的不同看法是對建筑結構形式“爭議”的焦點問題。
其實,作為一個結構工程師,常常是不能判斷建筑的形象與情感“效益”與結構實現的“成本”之間到底誰高誰底的,因為前者是很難量化的。我們所能做的就是在保證建筑功能與美學需求的諸種可選擇的結構實現方式中找到成本較低的解決方案。
國家游泳中心南北剖面圖
國家大劇院南北剖面圖
例如,在國家大劇院工程結構的第一輪初步設計時,法國ADP公司確定的結構底板的頂面標高為-26.0米,這個標高受到了中國建筑與結構工程師的質疑,如此深的基槽,且不說開挖與降水的成本會很高,結構壽命期內的抗浮設計成本更是一項很大的投入,為此,我們建議在保證其建筑功能需要的前提下,盡可能提高建筑底面標高,法方在修改后的初步設計中將這一標高提高到了-22.0米。
與上述情形相反,國家游泳中心工程的建筑設計由于采用了ETFE雙層充氣膜,這種膜材的造價很高,所以,在相對深挖(增加基礎開挖與結構抗浮成本)和抬升建筑總高度(增加圍護膜材的用量)的比較選擇中建筑師完全依賴的就是綜合成本最小化的原則。
■結構工程師要給浪漫的建筑師和建筑師的浪漫設定一條底線
作為一名結構工程師,我們還應該清醒地認識到,結構科學和材料科學的發展遠沒有達到可以令建筑師們的“浪漫思維”無約無束的境地。在實際結構的建造過程中影響結構安全的因素眾多,一方面,建筑結構理論歸根結底是一門實驗科學,理論與實際的偏差不可避免,另一方面,建造技術的發展水平和區域差異以及施工質量控制等等方面的諸多因素,都會給實際建造完成的建筑結構安全性能帶來某種程度的不確定性。
所以,建筑師們在通過建筑表達其美學或情感需求的時候,結構工程師們還是要給他們設定一條底線。這條底線不僅依賴于當代人類對自然界的認識水平,而且還依賴于現代結構技術與材料科學的發展水平,依賴于結構分析技術的發展水平。在某種程度上,我們可以允許他們突破某些“規范”條文的底線,但是不能允許他們突破“基本力學準則”的底線。尤其是當我們面對國外建筑師的時候,這一點做起來很難,譬如在和安德魯的法國ADP團隊合作設計國家大劇院的過程中,我們就經歷了多次的“爭執與說服”的過程。
國家游泳中心的設計過程也給了我們很多啟示,在建筑師浪漫的創意和結構的可實現之間還是有較長的一段路要走的,因此,我們投入很多精力進行了這種新型多面體空間鋼框架結構的試驗研究,最終才可以保證這種結構的安全、可靠。
鋼骨架結構效果
ETFE充氣枕結構
■不能認為結構設計安全與結構設計的創造性是永遠的矛盾
實際上,對結構設計安全性的憂慮往往會束縛住我們結構設計創造性探索的步伐,雖然這種憂慮不是多余的。發生巴黎機場結構倒塌事故后,我們聽到的幾乎都是對安德魯主持設計的建筑的一片懷疑之聲,結構設計工程師們,尤其是從事重要公共建筑結構設計的工程師們更是增添了更多的謹慎與小心。
我認為,結構設計的任務始終是:按照建筑的功能與美學需求確定安全、合理的結構體系;進而依據建筑結構可靠度設計有關標準所確定的原則對結構作用效應與結構抗力進行符合結構實際工作條件(性能)的分析;最終應做到在規定的結構設計使用年限內,在現行規范規定的各種荷載作用下,所設計的結構是安全可靠、經濟合理、技術先進的。
為了實現這樣的使命,對結構設計安全的自始至終的關切無疑是必要的,另一方面,結構設計的創造性不但是當今建筑設計發展的必然要求,同時也是結構設計技術自身發展的要求。國家大劇院、國家體育場、國家游泳中心以及新中央電視臺等建筑在結構設計方面的創造性探索可以為我們跟蹤當今世界先進的結構設計理念提供一些線索,也可以讓我們檢視一下很多經驗的、傳統的結構設計思維是否還適應現代結構設計發展的要求。
高層建筑結構在模型上一般可以假想為一個從地基出發并不斷上升的懸臂構件。高層建筑主要承受水平作用效應和豎向作用效應,水平作用效應一般指風荷載,在抗震設防地區還包括水平地震作用。豎向作用效應則一般由結構自重荷載產生,在抗震設防烈度為8、9度時的大跨度和長懸臂結構及9度時的高層建筑,還應考慮豎向地震作用。在這些作用效應下,結構整體及主體構件均需具有足夠的承載能力、剛度和延性,整體的設計注重概念,應符合相關規定中對于建筑形體的規則性要求,包括平面布置的規則性及豎向布置的規則性。結構在抵抗彎曲方面來說,結構體系務必滿足:不能使建筑物產生傾覆;在承受荷載時,它的支撐體系的某些部位不應被壓屈、壓碎或者直接被拉伸破壞;同時彎曲側移不能超出彈性極限的范圍。而結構在抵抗剪力方面來說,結構體系務必滿足:建筑物不至于發生剪切破壞;同時結構的整體剪切側移不能超過彈性極限的范圍。最后對于結構的地基和基礎來說,由于高層建筑一般是高次不靜定結構,所以結構體系在支承點處應避免較大的不均勻變形,從而可以防止出現較大的二次內力。
1.2高層建筑結構的傳力路線
高層建筑的豎向平面結構和水平平面結構都必須有明確的傳力路線。以某個作用在樓面上的重力荷載為例,它要通過樓蓋構件的彎曲傳遞給豎向結構的某個構件,直到建筑物的基礎和地基。傳力路線的模式根據結構的類別和布置而異。高層建筑的底層往往只允許有少量的立柱,以便有足夠的空間可以設置寬敞的入口、前廳或廣場。這時,有較密柱間距的上層結構的重力荷載,就要通過另一種結構體系傳給底層立柱以及底層立柱基礎。當高層建筑的樓層平面有突變時(如樓層有收進,或由矩形平面變成其他形狀的平面時),或結構體系有變化時,它們的傳力路線也會發生改變,這時往往既要有豎向的轉換結構,也要有水平方向的轉換結構。在高層建筑結構傳力路線中還有一個區別于底層建筑結構的特殊問題,那就是高層建筑的每個立柱都承受著上層傳來的重力荷載,要考慮它們各自在施工和使用過程中豎向壓縮量的差異。這既要在設計中加以考慮,也要在施工過程中及時加以調整,以保證各層樓面的水平度,減小因不同柱的壓縮量有過大差異而引起的結構內力。
2概念設計
2.1抗關于側力構件合理布置規定
對于一個單獨的結構單元,在設計上的通常做法是,一般會盡力避免設計出應力集中的縮頸和凹角部位;而且盡量不要在這些部位設置樓、電梯間。整個結構外形也要避免外挑,尺寸內收也不宜過急,避免在結構上形成薄弱部位。最大限度地防止因局部結構或構件破壞,而出現全部結構失去承載力的情況。
2.2關于高寬比的規定
高寬比的規定是對結構整體剛度、整體穩定、抗傾覆能力、承載能力以及經濟合理性的綜合考慮,是長期工程經驗的總結,根據當前的實際工程來看,這一限值是比較經濟合理與實用。但隨著目前高層建筑的快速發展,設計師們發現其實高寬比并不是必須要滿足的。實際工程已有一些超過高寬比限制的例子(如深圳京基100大廈高441.8m,共100層,高寬比為9.5,天津117大廈,高597m,共117層,高寬比為9.7),當然高寬比超過限值時,應對結構進行更加準確的受力分析,并施加可靠的構造措施。
2.3短肢剪力墻的設置問題
在新的規范中,將墻肢截面高度與厚度比為5-8的剪力墻定義為短肢剪力墻,且根據試驗數據和實際經驗,對短肢剪力墻在高層建筑中的應用增加了相當多的限制。比如在剪力墻設計等級為四級,短肢剪力墻的配筋率要求是1%以上,而普通剪力墻則為0.2%。高厚比較小的構件的脆性破壞較大,不利于抗震。所以,在具體的高層結構設計里,設計師們應該充分利用其它現有構造形式來代替短肢剪力墻,減少不必要的麻煩。
2.4嵌固端的設置問題
在結構計算模型的選擇上,如何準確地確定嵌固端位置是一個十分關鍵的問題,這直接關系到實際的受力狀態與選擇的計算模型是否符合以及內力等相應計算結果是否無誤。因為現在高層結構通常會設有一層或者是二層的地下室(可以當作人防工程來使用),而嵌固端的選擇,可以結合各層的剛度變化,再根據它的實際布置狀況,可以選擇在一層頂板的位置,也可以是二層頂板的位置,同時在地下室其他樓層等部位也是有很大可能的。但是在這個問題上,結構設計師們往往會忽略了一系列需要注意的問題,例如嵌固端的設置和剛度比的限制等問題,忽視這些問題將會對工程的質量和后期數據的分析造成很大的隱患。
3地基與基礎結構設計
在基礎的具體設計中,應根據地基復雜程度、建筑物規模和功能特征以及由于地基問題可能造成建筑破壞或影響正常使用的程度來確定基礎設計等級。首先,地基計算應滿足承載力計算的有關規定;其次,由于高層建筑的基礎設計等級均為甲級或乙級,因此均應按地基變形設計;若地下室存在上浮問題時,還應進行抗浮驗算。下面就高層建筑中不同的基礎類型分別闡述在設計計算中應注意的事項:在對箱基和筏基的梁板進行配筋計算時,務必相應地扣除底板上直接作用的梁板荷載和自重,當出現箱筏的四邊區格和地基反力過大的情況,這時要對梁板進行加強配筋;而在進行箱基結構設計時,要考慮洞口上下的連梁的影響,驗算其截面面積,若洞口的位置或者大小有變動,要復核連梁的抗剪強度和抗彎強度;若是進行整體箱基和筏基的設計,必須考慮樁土的因素,其共同工作會對結構造成一定程度的影響。
4結構計算與分析
4.1結構整體計算的軟件選擇
當前比較常用的計算軟件一般包括:建科院PKPM其中的SAT-WE,MIDAS,ANYSYS,ETABS,SAP等。由于各個軟件使用的計算模型有一定區別,所以在各個軟件計算結果上就會有或大或小的差異。實際工程中,務必考慮結構類型和計算模型的具體特點,在進行整體分析時選擇最恰當的軟件,并使用不同軟件進行對比分析計算,從不同軟件計算的相差較大的結果中,選擇最接近工程實際情況的數據。若不能選擇合適的計算軟件,不但會消耗大量的時間和精力,更重要的是會對結構埋下安全隱患,造成日后的工程問題。所以為了保險起見,通常在布置復雜的高層設計中,宜使用不少于兩種不同的模型來進行內力分析和計算。
4.2剪力墻底部加強部位墻厚的確定
在進行抗震設計時,剪力墻的底部加強部位一般采取增加邊緣構件箍筋和墻體的布筋來防止地震荷載的影響,預防結構出現脆性破壞,從而能夠比較有效的改善結構的抗震性能,在現行的規范中,明確指出剪力墻結構底部加強部位的高度可以參考墻肢的1/8和底部兩層二者中的較大值;而部分框支剪力墻結構底部的取值,可考慮以上兩層的高度及墻肢總高度1/8中的較大值。一般情況下,高層建筑結構底部加強部位的剪力墻截面厚度bw的取法按照以下規定,按照一、二級級抗震標準的情況,bw宜選擇剪力墻無支長度的1/16或層高;按照三、四級抗震標準的情況,bw宜選擇剪力墻無支長度的1/20或層高。但在墻底受力較小且結構層高相對較高的情況下,其厚度還按上述要求取值,就顯得很不經濟。所以,根據具體的工程實踐,厚度可以適當減小,而且必須按照下面的公式計算穩定性。
2結構選型
國家規范《綠色建筑評價標準》和《廣東省綠色建筑評價標準》中均給出在保證安全、耐久的前提下,采用資源消耗低和環境影響小的建筑結構體系的要求,規范指出符合要求的結構體系主要包括輕鋼結構體系、砌體結構體系和木結構體系。因此該工程在方案階段確定結構體系時,根據建筑使用功能要求,進行了多方案的比較:方案1:木結構體系。工程所在地區不是木材出產地,需要從外地運進木材,這樣規模的商務辦公樓,如果采用了木結構,一方面會消耗大量的森林資源,另一方面,單純的木結構也不能完全滿足建筑的使用功能要求。這個方案不可取。方案2:砌體結構體系。工程所在地區屬于抗震設防烈度7度區,該結構體系對于縱橫墻間的距離是有要求的不能太大,同時墻體的開窗面積是有限定的。這樣就很難滿足現在建筑的功能要求,而且這種體系的抗震性能較差,因此不采用該方案。方案3:鋼框架與鋼筋混凝土組合樓蓋結構體系。根據過往的設計經驗,在多層建筑中采用框架結構既能很好滿足建筑功能要求,又對抗震設防方面有利,同時又是合理、適用的體系。采用鋼結構可以減少對周邊的環境影響,滿足綠色建筑的要求。但是這個方案又存在一個問題:因為存在大量的綠化面積,給鋼結構防水措施提出了更高的要求,在這方面的材料消耗相應增多;也會增加使用階段的維護成本,不符合規范在建筑全壽命周期內,最大限度地節約資源的要點,該方案不是綠色建筑最佳的結構方案,因此也未被采用。方案4:鋼筋混凝土框架與部分鋼結構組合體系。該方案是在方案3的基礎上把鋼框架改為鋼筋混凝土框架結構,保留部分結構采用鋼結構。對照規范的內容綜合各方面的因素,因地制宜,進行多方案比較,確定符合規范要求的結構體系,達到經濟、合理、適用、節約資源的目標,并且根據工程實際情況,盡可能采用可再利用的建筑材料。通過方案比選,本工程選用方案4:鋼筋混凝土框架與部分鋼結構組合體系。
3結構設計要點
①入口處的8根“7字形”裝飾柱以及其連接的橫梁,8根柱子建筑要求外觀尺寸為700×1300,有16m高,橫梁跨度為30m,建筑外觀尺寸要求為800×1500,結構設計上構件采用鋼結構,一方面構件自重輕,可以減小地震作用,另一方面在處理橫梁與框架柱的連接節點上也變得容易。在工程成本上,采用鋼結構較現澆鋼筋混凝土結構,能夠節省人工、外腳手架、模板及支撐系統費用,另外工期效益顯著。②中庭屋蓋部分,建筑設計為不上人的采光屋面,該屋面跨度為30m,三邊支承。一方面因為跨度比較大,如果采用鋼筋混凝土,其自重必然較大,其次從建筑空間效果來看,在二層平臺花園以及其他各層均可以看到該屋蓋,如果采用鋼筋混凝土結構,不夠輕盈。所以設計結構設計上決定采用鋼網架結構。網架結構平面布置圖如圖7所示。③對于兩處從二層平臺花園上三、四樓的樓梯,因為建筑要求做成懸臂形式,中間不加柱子,從節省材料以及造型美觀考慮,把它做成鋼木組合樓梯(鋼骨架木踏步樓梯),從而達到既美觀輕巧又相對省材的目的。
4優化設計
結構專業在綠色建筑設計中最突出的內容是節材,因此該工程在設計圖紙出來以后,根據綠色建筑的要求,為了達到進一步節材的目標,對主體鋼筋混凝土結構部分的設計圖紙作了進一步的優化,其中優化的內容主要是通過調整次梁的布置,相對原設計一個房間三道次梁改為兩道次梁,從而增大板的跨度,使其在盡量不增加截面厚度以及鋼筋量的基礎上,達到最大優化值。優化前與優化后的18~28軸三層結構平面布置圖如圖8、圖9所示。根據結構計算得出,前后兩個設計成果在混凝土用量上基本持平,而在鋼筋用量上,前一個含鋼量為35.63kg/m2,而后一個為33.40kg/m2,這一優化節省了6%鋼筋用量;同時因為減少了一道次梁,在建筑模板方面也會相應減少材料損耗。另外,拔風塔中央的準800直徑的圓柱也作了優化,由原來C25,配18根25鋼筋的混凝土柱改為準800×10的鋼管柱,這樣既節省混凝土8.8m3,鋼材量用量也從原來的1.35噸,減少為0.434噸,并且節省人工、模板及支撐系統費用,工期效益顯著。綜上,優化后的本工程符合國家規范《綠色建筑評價標準》和《廣東省綠色建筑評價標準》中,對建筑工程提出的資源消耗低和環境影響小的要求,節省了鋼筋用量,減少材料損耗。
2煤炭工業礦井建筑結構設計中的改進措施
煤炭工業中的建筑結構設計必須體現安全性,因而其設計要求較一般的建筑設計高出很多,同時由于以往建筑設計對功能、安全等指標的過于注重,而忽視了其他方面的考慮,使得設計上存在一些問題,需要在具體設計中加以改進,以實現更高的發展要求。
2.1明確建筑結構設計指標,建立標準模型
煤炭工業建筑設計的成型由各項具有重要作用的指標數據決定,這也是在設計中的重要參考依據,對設計方案的最終完成有著重大影響[3]。建筑設計的各項參數包括目標參數、控制參數等的設定都要結合煤礦的實際情況,將波動幅度小的參數選擇出來,作為指標形成參照標準,能夠在設計中更加精準地得出與目標參數相符的數據。在設計中,建筑材料以及結構構件尺寸、面積等指標需要在建設前設定出來,對各項參數前處理。相似的函數應當設計多組,以便在比較中找出最優化的方案。通過函數分析煤炭工業建筑結構的性質,為工程建設最大限度地節省了時間、材料等。同時,建筑結構的穩定安全性與使用年限等的硬性規定,設計要權衡約束條件,結合力學等科學確定架構的剛性、結構形變限度等,確保符合規定標準。當設計各項重要指標都確定之后,以此為參考建立標準模型,使結構設計更加直觀化,有助于煤炭工業建筑的最終建設。
2.2綜合計算數據,選擇最佳設計方案
煤炭工業的建筑結構設計除了龐雜的數據確定外,還設計多項計算程序的運行,這也是改進設計的一個重要環節[4]。由于煤炭工業建筑要求高,變量復雜,多種設計條件在其中需要綜合考慮,因而對其進行數據的計算,以實現建筑建構的精確化。在計算當中,結合實際需要,采取不同方法對數據進行演算,轉化約束條件,節省時間,恰當的計算方式能夠推動程序的最優化,使其用途更加齊全,運行更加高效,多個小程序的有機組合,形成程序的綜合化,使結構設計更有保障。通過程序的運算,結合計算結果,在模型的矯正下,根據現實要求,選擇煤炭工業建筑結構設計最佳的方案。通過對這個方案進行可行性的評估以及安全性等的結合,進行具體實施建設。同時,在以往建設中對煤礦建筑美觀因素考慮不足的具體情況下,將外觀等參數置入計算當中,在方案中加以體現,從而提高結構設計的人性化。
2.3綜合分析計算結果,保證結構設計質量
由于在結構設計中參數的復雜性,導致計算結果也多樣化,主要的設計人員要將計算結論加以統計,進行綜合分析,通過各個設計方案優劣的比對,形成科學的認識[5]。在此基礎上,從多個角度抓住方案細節,分析異同點,避免因疏忽而遺漏了關鍵點,致使出現結構設計的漏洞。煤炭工業的建筑建設是一項綜合的工程,需要動用大量的資源,因此,設計上必須精益求精,在考慮節省成本的同時,對建設技術也要相應地加以改進。通過對數據計算結果的綜合分析,設計方案的比對,消除了建設中的各項弊端,使結構設計更加趨于科學性,從而保證了建筑結構設計的質量,為設計的優化提供了重要的保障。
高層建筑結構設計課程的教學內容涉及混凝土結構、結構力學、結構抗震等知識的綜合應用,作為培養從事土木工程設計、施工、預算、招投標工作的高級工程技術人才的土木工程專業,一般將高層建筑結構設計課程設置為一門專業限選課。土木工程專業畢業生的就業方向主要有結構設計、工程施工技術管理、預算和招投標等崗位,這些工作崗位都與高層建筑結構設計具有密切聯系。土木工程結構設計崗位的主要工作內容已由多層建筑設計轉變為高層建筑設計;從事土木工程施工管理工作,必須掌握高層建筑結構的識圖與讀圖等知識,清楚高層建筑中哪些是主要受力構件,哪些是構造構件,在施工過程中遇到一些簡單的高層事故應如何處理,等等,這些都有賴于該課程的學習;土木工程預算和招投標管理工作中大量的分析計算都要靠計算機來完成,要求工作人員要在看懂圖紙(很多是高層建筑圖紙)的基礎上建立分析模型,做到不多算、不漏算,這也有賴于該課程的學習。工程專業開設該課程的意義由此可見。但是,由于種種因素的影響,目前該課程教學中還存在不少現實問題。鑒于此,本文擬從教學內容、教學模式、教學方法、教學過程等方面探討高層建筑結構課程的教學改革問題,希望能為該課程教學質量的提高提供參考。
一、課程教學內容規劃
隨著我國經濟的發展,土建行業對人才的要求特別是對學生工程素質的要求越來越高,企業歡迎的是具有完備知識結構又具備較強工程能力的人才。高層建筑結構設計課程涉及很多計算,教學內容十分豐富,但該課程的學時往往十分有限,因此,合理選擇教學內容就顯得尤為重要。該課程教學內容的選擇應以應用型人才能力培養為目標,理論與實踐并重,并注意兼顧不同學習基礎的學生。土木工程專業一般將該課程安排在大學四年級第一學期,主要內容包括緒論、高層建筑結構的體系與布置、高層建筑結構的荷載和地震作用、高層建筑結構的計算分析和設計要求、框架結構設計、剪力墻結構設計、框架―剪力墻結構設計、高層建筑地下室和基礎設計等,與先修課程混凝土結構、混凝土結構與砌體結構、基礎工程、工程結構抗震等有緊密聯系,也存在一定的內容重復現象。為了保持教學內容的系統性,教師處理與已開設課程重復的內容時,應做到“重復的內容講差別,相似的內容講典型,突出重點”[1]。例如:荷載計算部分的一些內容與混凝土結構課程的相關內容相似,按照相似的內容講典型的原則,對該部分內容,教師應重點講解高層建筑結構的風荷載計算(考慮風震系數),而活荷載計算可不考慮不利布置;框架結構設計部分的一些內容,與混凝土結構與砌體結構等課程的相關內容存在重復現象,按照重復的內容講差別的原則,對該部分內容,教師應重點講解在框架結構設計中如何調整位移比、周期比、軸壓比、相鄰層剛度比、層間位移角、層間受剪承載力比等高規參數;高層建筑結構基礎設計部分的一些內容,與基礎設計和基礎工程課程存在內容重復現象,按照重復的內容講差別的原則,教師可重點講解高層建筑“筏板基礎”“樁基+筏板”設計中的常見錯誤及其原因。
二、課程教學模式
在開設高層建筑結構設計課程時,學生已具備一定的專業技能,但綜合能力還有待提高。采用多元化教學模式是近年來該課程教學的主要特點之一。根據高層建筑結構設計課程實踐性和操作性強的特點,教師應以促進學生提高實踐技能、掌握關鍵知識為主線,整合課程各個單元的教學內容開展任務驅動教學和項目導向教學,將“教、學、做”有機結合,著力體現應用性、實踐性和開放性的課程理念。將“教、學、做”一體化的教學模式有機融入教學過程,有利于處理“懂”與“會”的關系,學生可以先懂后會,也可以先會后懂或邊懂邊會。此外,教師還可以把課堂搬進實驗室、建筑設計院、工程施工現場等場所,廣泛開展直觀教學,實現課堂教學與實習實訓的一體化,從而有效提升學生的綜合能力。
三、課程教學方法與教學手段
高層建筑結構設計課程的教學環節分為課堂教學、PKPM軟件應用、工程設計實踐和考核[2]。以下從四個方面探討該課程的教學改革。
(一)課堂教學
課堂教學應以講解高層建筑結構設計的基本設計理論、抗震規范、高層混凝土結構技術規程等內容為主;要有明確的教學目標、有效的教學策略和具體的學習評價指標;要注重學生興趣的培養和潛能的發掘與提升,廣泛開展探究性學習和協作學習;要注意培養學生終身學習的觀念,力促學生自主發展和可持續發展。在高層建筑結構設計課程教學中,還應做到課堂講授、自學、討論相結合,課內學習與課外學習相結合,理論學習與實踐環節相結合[3]。第一,課堂講授與自學相結合。教師在課堂教學中應重點講授基本概念、基本原理和難點,并向學生指定課外自學的內容和思考題,以培養學生的自學能力,化解教學內容多而課時有限的矛盾。第二,開展課堂討論,啟發學生開展積極的思維活動[4]。大學生思想獨立性強,思維靈活,喜歡獨立思考問題。因此,在全班或小組內圍繞一個問題開展討論,讓學生各抒己見,相互啟發,有利于發揮學生學習的積極性和主動性,充分提高教學效果。如在高層結構選型內容的教學中,可讓學生以某“高層設計采用哪種結構體系較合理”為題在班級范圍內開展討論,讓學生在愉快的氛圍下通過主動思考掌握高層結構體系的有關知識。就課堂討論的方式來講,教師可先提出問題,讓學生在小組討論的基礎上,選出代表到黑板前陳述意見,這樣既可活躍課堂氣氛,提高教學效果,也可提高學生的表達能力。第三,課內學習與課外學習相結合。在每次課結束前,教師都應向學生明確課后的復習內容、預習內容及思考題。對于較抽象的教學內容,教師應組織學生開展課堂討論或課外學習小組(宜以宿舍為單位)討論。教師還可結合單元教學內容,組織開展以高層結構設計基本理論知識和常規應用為基礎的小型競賽活動,如PKPM建模大賽等,以鍛煉提高學生的知識運用能力。第四,理論教學與實踐教學相結合。筆者的調查表明,很多學生在學習過程中都感覺到“高層建筑混凝土結構技術規程”難以理解,難以聯系具體工程實例;結構設計只是停留在單個構件上,不明確結構整體設計的思路。因此,教師在教學中應結合具體教學內容引入工程實例,通過對工程實例的詳細講解,使學生加深對理論知識的理解,提高應用能力。比如,對高層建筑常用的三種結構,即框架結構、剪力墻結構、框架―剪力墻結構,教師可借助實際工程項目,依次詳細講解抗側力構件的布置、主要高規參數的控制、平面的布置、施工圖的繪制,通過實例講解使學生理清結構設計的整體思路,加深對規范條文的理解。需要說明的是,教師教學中選用的案例可以來自企業生產實踐,也可來自教師指導學生完成的工程設計實踐項目。教師指導學生進行工程設計實踐(包括結構選擇、結構建模、施工圖繪制等),是提高高層建筑結構設計課程教學質量的有效手段。
(二)PKPM軟件應用教學
PKPM軟件應用教學的重點是理解和掌握高層建筑結構設計的基本過程,主要有以下三個教學步驟:(1)結構布置的講解與練習。在此步驟中,要通過講解和練習,使學生掌握運用PKPM軟件建模的技巧,理解“抗規”關于結構平面和豎向布置的基本要求。結構平面布置要求平面形狀簡單、規則、對稱、質心和剛心重合[5]30−31;結構豎向布置的要求主要是抗側力構件沿豎向不突變等。(2)PKPM基本計算參數輸入練習。在此步驟中,應要求學生按照相關要求,結合工程結構的實際情況輸入PKPM相關參數,并理解基本風壓、基本雪壓、設計地震分組、抗震設防烈度、連梁剛度折減系數等參數的含義。(3)PKPM計算結果的分析判斷和參數調整。在此步驟中,應指導學生通過對計算結果的分析,判斷結構的周期比、位移比、剪重比、相鄰層剛度比、軸壓比、整體穩定是否滿足要求,并對不滿足要求的參數進行調整。
(三)工程設計實踐教學
開展高層建筑結構設計課程實踐教學,有利于學生強化工程概念和感性認識,激發學習主動性,提高創新能力。在工程設計實踐教學中,教師可以組織學生分組參觀調查當地已建高層建筑,了解其構型、結構體系、存在的施工問題等;可以讓學生以小組為單位完成高層建筑的建模,如15層以下教學樓、辦公樓、賓館等框架結構的建模,20層以下住宅樓等剪力墻結構的建模,20層以下寫字樓、公寓等框架―剪力墻結構的建模。
(四)課程考核
高層建筑結構設計課程的常規考核方法是筆試成績與平時成績相結合,但筆試成績一般占總成績的80%,這容易導致學生只重視理論而忽視實踐,不利于學生應用能力的提高。該課程的考核應著重考核學生綜合運用知識的能力,可采用筆試、上機操作、實踐環節相結合的考核方式。其中,筆試成績占總成績的50%,試卷的制作可參考國家“注冊結構工程師專業資格”考試;上機操作成績占總成績的20%,可以給定房屋建筑平面圖和立面圖,讓學生在規定時間內運用PKPM軟件完成滿足結構設計規范要求的結構建模;實踐環節成績占總成績的30%,內容包括考察報告的撰寫情況、在分組建模實踐教學中的表現等。
四、教學過程的組織
如前所述,在每次課結束前,教師都應向學生明確課后的復習內容、預習內容及思考題,其中預習的內容可以是參觀現有高層建筑結構,調查了解其結構形式、結構設計、施工中存在的問題等,并形成文字。導入新課時,教師可用5分鐘左右的時間了解學生的預習情況,并通過總結引出新課題。在講授新課的過程中,教師應突出重點,把握難點,可按照理論講授―例題解析―學生練習―歸納總結的步驟組織教學。如在講解高層建筑的結構體系時,可先分述每種結構體系的概念,再舉例分析典型的結構體系布置,然后讓學生畫出附近教學樓等高層建筑的結構,最后歸納總結常見建筑結構體系的選擇。課堂討論教學環節一般可采取學生自由發言與教師總結相結合的方式,而在安排有小組前期調研的情況下,應緊緊圍繞小組代表的匯報發言開展現場提問。另外,教師在課堂教學中還應引導學生主動到建筑設計院、工作室參觀實踐,以實現學以致用,不斷提高學生的實踐應用能力。例如,為了提高應用型技術人才培養質量,黃淮學院在其大學生創新創業園設置了建筑設計院校內實踐基地,為土木工程、建筑工程等專業學生的工程實踐提供了良好的平臺,教師引導學生到這里結合教學內容參觀實踐,無疑能夠有效地促進學生實現所學理論知識的內化和實踐應用能力的提升。
作者:邵蓮芬 單位:黃淮學院
參考文獻:
[1]牛海成,徐海賓.面向可持續發展的高層建筑結構設計課程教學改革探討[J].高等建筑教育,2013(22):72―75.
[2]劉圓圓.淺談《高層建筑設計》課程改革方案[J].城市建設理論研究:電子版,2014(36):8119―8120.
2基礎設計
商業樓基礎設計等級為甲級,采用樁加防水板基礎。根據前期試樁檢測報告結論,采用Φ700鉆孔灌注樁,抗壓兼抗拔樁。基礎埋深12.1m,遠大于建筑結構高度的1/18。經復核,風荷載及水平地震作用下基底均不出現零應力區,可滿足高層建筑結構抗傾覆穩定要求。
3地下車庫設計
地下車庫采用框架剪力墻結構,局部增加的剪力墻,主要有兩個作用:一是為了使得地下1層與地上1層的剪切剛度比大于2,滿足正負零作為地上單體嵌固端的要求,二是為了更好地保證室內外高差處水平力的傳遞。商業樓室內及室外相關范圍內,正負零零層采用梁板式結構,板厚180~250,雙層雙向配筋,且配筋率不小于0.25%。
4上部結構設計
(1)超限情況的判定根據“住房和城鄉建設部關于印發《超限高層建筑工程抗震設防專項審查技術要點》的通知(建質〔2010〕109號)”,對商業樓的超限情況判定如下:①商業樓結構高度29.2m,采用現澆鋼筋混凝土框架結構,屬于A級高度高層建筑,高度不超限。②商業樓3層以上豎向構件縮進大于25%,屬尺寸突變(立面收進);③商業樓地上樓層存在多處樓板有效寬度小于50%,開洞面積大于30%的情況;④商業樓3層和4層之間質心相差達18m,大于相應邊長的15%,同時,考慮偏心扭轉位移比大于1.2,小于1.4。綜合以上分析,商業樓屬于超限高層建筑。(2)上部結構計算分析在小震作用下,全部結構處于彈性狀態,構件承載力和變形應該滿足規范的相關要求。根據《高層建筑混凝土結構技術規程》JGJ3-2010第5.1.12條的要求,本工程采用SATWE與PMSAP兩種不同分析軟件分別進行了整體內力及位移計算,兩種軟件的計算結果基本一致,結構體系滿足承載力、穩定性和正常使用的要求。樓層最大位層間移角小于1/550,滿足JGJ3-2010第3.7.3的要求;在剛性樓板假定下,慮偶然偏心影響的規定水平地震力作用下,豎向構件的最大水平位移和層間位移與該樓層平均值的比值均小于1.4。根據建筑抗震設計規范GB50011-2010第5.1.2條,對不規則建筑應采用時程分析進行多遇地震下的補充計算。本工程所選的三條波為TH2TG035、TH4TG035、RH4TG035,每條時程曲線計算得到的結構底部剪力均大于CQC法的65%,三組時程曲線計算得到的底部剪力平均值大于CQC法計算得到的底部剪力的80%,故所選三條波滿足規范要求。時程分析的結果表明,結構體系無明顯薄弱層,時程分析法包絡值較CQC法計算結果小,故結構的小震彈性設計由CQC法計算結果控制。根據高層建筑混凝土結構技術規程JGJ3-2010第5.1.13條的要求,對商業樓采用彈塑性靜力分析方法進行了補充計算。兩個方向罕遇地震下性能點最大層間位移角均小于1/50,小于規范彈塑性位移角限值,因此宏觀上商業樓所用結構體系能保證大震不倒的設計要求。在通過二階段設計實現三個水準的基本設防目標以外,針對本工程的具體情況,提出了以下抗震性能化目標:①設防地震作用下,中庭連廊等薄弱處樓板內雙層雙向鋼筋不屈服;②設防地震作用下,懸挑梁根部框架柱及大跨梁兩端相連框架柱斜截面抗剪按彈性設計,正截面抗彎按不屈服設計;PMSAP樓板應力分析結果表明,中庭連廊根部、平面凹口陰角位置一般為應力集地區域,在多遇地震作用下,樓板主拉應力不大于混凝土抗拉強度標準值,樓板不會開裂,在設防地震作用下,應力集中位置樓板主拉應力略大于混凝土抗拉強度標準值,但適當加大樓板配筋,即可滿足樓板內鋼筋不屈服。在設防地震作用下,利用SATWE進行彈性設計和不屈服設計,分別校核懸挑梁根部框架柱及大跨梁兩端相連框架柱的箍筋和縱筋,并與多遇地震計算結果一起進行包絡設計。計算結果表明,配筋值均在合理范圍,配筋切實可行。通過以上性能化設計措施,在對結構的經濟性影響較小的情況下,提高了結構的抗震性能,增加了建筑的安全性。(3)上部結構設計針對偏心布置和扭轉不規則,設計時,盡量使結構抗側力構件在平面布置中對稱均勻布置,避免剛度中心與質量中心之間存在過大的偏離;加強構件的剛度,增強結構的抗扭性能。計算時,考慮偶然偏心的影響,設計時適當加強受扭轉影響較大部位構件的強度、延性及配筋構造。通過調整結構布置,將考慮偶然偏心下的最大位移比嚴格控制在1.4以下,第一扭轉周期和第一平動周期比嚴格控制在0.9以下。針對立面收進帶來的扭轉不利影響而采取的抗震措施詳第(1)條。構造上,對收進樓層(4層)加厚至140mm且雙層雙向加強配筋,配筋率不小于0.25%,但為減小大跨部分樓板自重,室內大跨度區域樓板厚120mm,屋面大跨度區域樓板厚130mm,收進部位上下層樓板(3層和5層)厚度不小于120mm,并雙層雙向加強配筋。根據《高層建筑混凝土結構技術規程JGJ3-2010》的相關規定,體型收進部位上、下各兩層塔樓周邊豎向結構構件的抗震等級提高一級,框架柱在此范圍內箍筋全高加密,提高縱筋配筋率;收進部位以下兩層結構周邊豎向構件配筋加強。針對因開洞形成樓板不連續情況,整體計算時按實際開洞情況建模,并將以上樓層定義為彈性膜,以考慮樓板不連續對結構的影響;同時,構造加厚連廊等薄弱區域樓板至130mm厚,并雙層雙向配筋,配筋率不小于0.25%。
在對高層建筑結構常微分方程求解器進行深入研究的過程中,清華大學教授包世華和袁駟有效提高了常微分方程求解器的應用,實現了對常微分方程求解器的深化研究。袁駟教授利用有限元技術,對偏微分方程的半離散化進行控制,有效實現了對常微分方程組的求解,提高了對結構線性函數的應用。通過常微分方程求解器的直接求解,對有限元線進行實際應用,有效對一般力學問題進行計算,在很大程度上提高了一般力學問題的計算效果。而包世華教授對半解析-微分方程求解器方法進行分析深化,有效將半解析-微分方程求解器方法應用到高層建筑結構結構靜力、動力、穩定性的分析驗證中,提高了對高層建筑結構力學分析的效果。
2高層建筑結構彈塑性動力分析方法
高層建筑結構彈塑性動力分析方法在高層建筑結構力學分析中又被稱為時程法。高層建筑結構彈塑性動力分析方法主要是對地震波直接輸入結構,完成結構的彈塑性性能分析。這種方法要求結構力學分析人員建立專門結構彈塑性恢復性動力方程,通過逐步積分法實現對地震過程中速度、加速度、位移等的時程變化,完成對建筑結構的描述。高層建筑結構彈塑性動力分析方法對建筑結構在強震的作用下彈性及非彈性階段的內力變化進行深入研究,有效對高層建筑構件可能出現的損壞、開裂、屈服、倒塌進行分析,提高建筑結構力學的分析效果。當前在國內的高層建筑結構彈塑性動力分析方法主要輸入地震波為隨機人工地震波,結構模型的計算多采取層模型。除此之外,高層建筑結構彈塑性動力分析方法還加大了對樓板結構變形的分析,使用并列多質點計算模型進行計算,對高層建筑結構的基礎轉動和評議進行研究,有效提高了對土體、基礎及上部結構耦合振動的模擬效果。
近年來我國還高層建筑結構彈塑性動力分析方法中對扭轉振動進行分析,取得顯著進展。高層建筑結構彈塑性動力分析方法能夠有效對高層建筑結構中存在的薄弱環節進行分析,提高對結構延展性、變形的實際分析效果。高層建筑結構彈塑性動力分析方法預計的破壞形態與實際地震的破壞效果非常接近,有效對地震危害進行防護處理,提高了高層建筑結構的防震效果。但是當前對高層建筑結構彈塑性動力分析方法的整體看法不一。部分人員認為采取大型高速計算機對典型地震波進行分析;但是部分人員認為典型地震波本身不一定能代表真正的地震,因此在進行研究的過程中要對研究算法進行簡化,對近似方法進行研究。隨著高層建筑結構彈塑性動力分析方法的逐漸發展,越來越多國家在進行高層建筑結構力學分析的過程中開始對地震波根據實際情況進行選取,模擬效果大幅提高。
3基于最優化理論的結構分析方法
基于最優化理論的結構分析方法主要是通過數學上的最優化理論及計算機技術實現對高層建筑結構設計的一種新方法。基于最優化理論的結構分析方法有效實現了對結構設計的被動分析道主動設計的轉變,提高了高層建筑結構設計的靈活性,對設計具有非常好的促進效果。基于最優化理論的結構分析方法對空間的要求較為嚴格,設計過程中要保證以最小的質量產生最大的剛度。因此,設計人員要對框架剪力墻結構中的剪力墻進行充分分析,實現墻體的優化布置和數量選取,提高基于最優化理論的結構分力學析效果。基于最優化理論的結構分析方法中要求保證適度的剛度,對剛度要進行嚴格控制。尤其是在分析剪力墻與地震作用的時,要對剪力墻剛度進行優化設計,確保建立正確的最優化剛度模型,提高基于最優化理論的結構分析方法的模型實際應用效果。目前我國的基于最優化理論的結構分析方法發展還不全面,在進行單位建筑面積上剪力墻慣性矩度量指標設計的過程中還存在較多問題。我國的基于最優化理論的結構分析方法仍處於研究和發展階段。高層建筑結構力學分析人員要對基于最優化理論的結構分析方法中的數學模型進行深入研究,對剪力墻最優剛度進行有效分析,從本質上提高數據分析處理效果,拓寬基于最優化理論的結構分析方法的應用前景。
4基于分區廣義變分原理與分區混合有限元的分析方法
2.建筑結構抗震設計方法
2.1結構地震分析法
結構抗震設計的首要任務就是對結構最大地震反應的分析,需要確定內力組合及截面設計的地震作用值。常用的地震分析法有底部剪力法、彈性時程分析方法、振型分解反應譜法、非線彈性靜力分析法以及非線彈性時程分析法。其中最為簡單的屬底部剪力法,其在質量、剛度沿高度分布較均勻的結構中較為適用。假設結構的地震反應以線性倒三角形的第一振型為主。并通過第一振型周期的估計來確定地震影響系數。對于較為復雜的結構體系,采用振型分解反應譜法來計算,它的思路就是根據振型疊加原理,將各種振型對應的地震作用、作用效應以一定方式疊加起來得到結構總的地震作用、作用效應。而彈性時程分析適用于特別不規則和特別重要的結構中,將建筑物看作彈性或彈塑性振動系統,直接輸入地面振動加速度記錄,對運動方程積分,從而得到各質點的位移、速度、加速度和剪力時程變化曲線。非線彈性時程分析法可以準確完整的反映結構在地震作用下反應的全過程。按非線彈性時程分析法進行抗震設計,能改善結構抗震能力和提高抗震水平。非線彈性靜力分析法考慮了結構彈塑性特性,在結構分析模型上施加某種特定傾向力模擬地震水平側向力,并逐級單調增大,構件一旦屈服,修改其剛度直到結構達到預定的狀態。
2.2建筑結構抗震設計方法
為了確保建筑結構的抗震能力最佳,所設計的結構在強度、剛度、延性及耗能能力等方面都達到最佳,質量分布均勻,平面對稱、規則抗側向力較好的體系及剛度與承載能力變化連續的結構體系是優先考慮的設計方案,從而經濟地實現“小震不壞,中震可修,大震不倒”的目的。
(1)根據我國的抗震設計規范,建筑持力層的選擇非常重要,它關系著整個建筑物的安全性能,同時規范還指出,建筑的形體要適當,要求建筑的形狀及抗側力構件的平面布置宜規則,并有整體性,不宜用軸壓比很大的鋼筋混凝土框架柱作為第一道防線。
(2)抗震結構體系布置是建筑結構抗震設計的關鍵問題,如房屋建造中框架結構體系和砌體結構的選擇問題。地震后會有余震,抗震結構體系應具有多道抗震防線。如框架結構設計中為了避免部分構件破壞而導致整個體系喪失抗震能力,將不承受重力荷載的構件用作傳遞途徑。
(3)傳統的結構抗震是通過增強結構本身的抗震性能(強度、剛度、延性)來抵御地震作用的,即由結構本身儲存和消耗地震能量。消能減震設計指在結構中設置消能器來消耗地震輸入的能量,減輕結構的地震反應,減小結構發生破壞和避免結構物直接倒塌以達到預期防震減震要求。隔震設計指在建筑物基礎與上部結構之間設置隔離層,即安裝隔震裝置,通過隔震裝置延長結構的基本周期,避免地震能量集中使結構發生屈服和破壞。這是一種以柔克剛積極主動的抗震對策,是一種新方法、新對策、新途徑。
(4)盡可能多設置幾道抗震防線,一個較好的抗震建筑結構由若干個延性較好的分體系組成,并由延性較好的結構構件連接協同工作。強烈地震之后往往伴隨多次余震,如果只有一道防線,則在第一次破壞后再遭余震,將會因損傷積累導致倒塌。如像教學樓這種相對大開間、單跨、大窗口、懸臂走廊的純框架結構,其縱、橫方向的剛度不均勻,很容易發生扭轉破壞,而整個結構只有框架一道防線,一旦柱子發生破壞,沒有其他約束措施,整個框架因喪失全部承載能力而倒塌。防止脆性和失穩破壞,增加延展性。設計不良的細部結構常常發生脆性和失穩破壞,應該防止。剛度的選擇有助于控制變形,在不增加結構的重量的基礎上,改變結構剛度,提高結構的整體剛度和延展性是有效的抗震途徑。
(5)場地條件就是導致建筑震害過于嚴重的關鍵因素,所以選擇最為有利的地形最大限度的防止建筑物出現在不利于抗震功能發揮的區域。選擇在抗震過于危險的區域來建造房屋,有可能對人們的生命財產安全帶來危害。在汶川地震時,北川縣城西的房屋建造在有滑坡隱患的山體之下,在地震的作用下,山體崩塌、滑坡,將大量的房屋掩埋,死亡1600人,損失慘重。
2高層建筑大底盤不規則多塔結構的設計要點分析
大底盤多塔建筑結構在設計時首先要考慮到該結構的抗震效果,關于多塔樓建筑的抗震效果也是現代人們越來越關注的問題。在大多數的大底盤多塔結構設計中主要采用“調”、“抗”、“放”的整體結構設計思想,因此設計出了一種適用于高層建筑的新型連體剛結構。同時通過現場實踐對該系統進行了技術服務和工程質量方面的研究,實踐結果表明該項設計結構經受住多種受力考驗,達到了預期的效果。此外,從整體的設計模型中可以看出,在大底盤多塔結構中距離塔樓較遠的結構構件受到的振動影響較小。換句話說,在水平力的作用下,多塔樓對于距離塔樓較遠的構件的影響較小。由此,我們可以得出,在滿足大底盤頂層上部塔樓嵌固層的條件下,可以對塔樓各部分結構進行拆分計算,并且這樣的大底盤塔樓結構計算符合塔樓結構的實際受力情況,對于這些結構的計算將用于后續的工程設計當中。另外,大底盤頂層樓板平面要具有足夠的剛度來滿足其嵌固功能,可以采用大底盤頂層樓板與人防結構相結合的方式,得到頂層樓板的板厚厚度要達到300mm。對于板配筋設置采用雙重雙向拉通的方式,板的配筋率要在0.3%之上。針對落地的剪力墻的配筋要滿足設計計算要求,其配筋值應為其對應上部短肢剪力墻配筋值的1.1倍以上。
3高層建筑大底盤不規則多塔結構的設計計算分析
對高層建筑大底盤不規則多塔結構進行計算時要采用兩種不同的力學模型結構分析軟件進行計算,以確保對此不規則結構的力學分析的可靠性。對于B級高度的高層建筑大底盤不規則多塔結構的設計要滿足的計算要求如下:首先,采用兩個或兩個以上力學模型三維分析軟件對此類建筑的整體內力位移進行計算;其次,在對此類建筑進行抗震計算時要考慮到結構的扭轉效應,其振型數值要在塔樓數值的9倍及其以上,并且還要滿足振型的參與質量不小于總質量的90%;最后對于此結構設計的補充運算采用彈性時程分析的方法。對于結構中薄弱層的彈塑性變形的驗證,采用彈塑性靜力或動力分析方法。針對那些豎向不規則的多塔結構或是高層建筑中某一層建筑的抗側剛度在其上一層抗側剛度的70%之下,或是其抗側剛度值是其上相鄰3層樓層側向剛度平均值的80%之下,或是高層建筑中某層建筑的豎向抗側力構建之間不連續,此樓層的薄弱層抗震標準值的地震剪應力需要乘以1.15的增大系數。對于高層建筑大底盤不規則多塔結構的設計需要滿足JGJ3-20025.1.13的規定。
4高層建筑大底盤不規則多塔結構的設計
針對高層建筑的9度抗震設計,進行多塔結構設計時,其結構選用要盡量避免帶夾層、連體、轉換層等結構。針對高層建筑的抗震度在7度或是8度時,在選用建筑結構時,選用兩種或以下種類的建筑結構,對于剪力墻結構錯層的建筑房屋高度要分別≤80m和≤60m,其框架剪力墻結構錯層建筑房屋的高度與剪力墻結構高度的要求相同。
1.2教師教學方法單一,反思調整不及時教師主要是為完成教學任務,在目前各高職院校強化動手能力,采取2+1學習方式,即2年在校內學習理論知識,1年校外實習,這樣學生的理論課學習課時數就有所減少,若還按原來傳統的教學模式,采用滿堂灌的方式,在有限的時間內將全部知識都傳授給學生;甚至有些教師試圖通過多媒體授課,將大量的知識信息放到課件中,不停給學生展示,學生根本來不及思考就硬性地接受,可想而知,這樣得到的知識無法應用到實踐中。
1.3重視理論學習,缺乏動手能力建筑結構課程理論性與實踐性都很強,傳統做法是將全部理論知識講授給學生,而學生動手參與設計能力的培養較少,很多學生課程學得不錯,但不會應用,真正進行結構設計,就無從下手,高分低能現象比較嚴重。
1.4教學內容更新較慢新時期的高職教學理念是培養高技能人才,因此在教學內容上也應適應技能培養方面的調整,但教材更新還達不到這個要求,很多課本上還沒有體現設計理念。
2以設計為導向的建筑結構課程教學方法
2.1引入以設計案例為導向的教學模式根據高職高專以就業為導向的辦學理念,改革課程教學體系,突出以實踐教學為重點的相關內容,針對不同就業崗位群,將建筑結構各章節內容歸納整理成各具體的、切合實際的工程設計案例。即將課程內容項目化,將項目分解成各任務,針對不同任務對應于實際工程案例,各案例均來自工程設計任務。每當學生完成一個項目課程,就能針對該課程項目完成一項實際工程中的設計任務,將教材中單一算例用工程設計案例來代替,避免學生學習課程時的盲目性,即所學知其所用,真正調動了學生的學習熱情,通過真正的工程設計案例,更好地引導學生學習建筑結構課程理論,促進學生主動思維,培養學生以設計為導向的建筑課程教學模式,更好地為學生走向工作崗位提供保障。
2.2以設計案例為向導的教學方法與教學手段改革傳統教學方法是以教師課解為中心,學生被動接受知識。課堂上主要是教師唱主角,學生缺乏參與熱情,有的學生上課無精打采,甚至上課玩手機,根本聽不下去課。以設計為導向的教學方法就是要轉變這種狀況,授課以學生為中心,學生參與到課堂的教學中,每個學生都是承擔設計案例的設計者,完成一堂課的教學需要由學生、主講教師、設計室及實訓中心多個方面配合完成。由于建筑結構課程是以設計為主的,其教學目的也是要讓學生掌握工程結構設計理念,達到進行結構設計及能識讀工程結構施工圖。那么為了達到這上目標,有設計室參與到教學中是最好不過的了,因為可以通過設計室的實際工程項目作為授課的直接案例,這部分列入教師備課教案的一部分,每次課教針對相關內容進行案例布置,當然這需要教師通過事先將學生分組形式,將本次課程內容分組布置成設計任務,學生要完成設計任務需要掌握的理論知識,就是學生要主動探究的內容。教師可以借助于多媒體演示以及建筑結構模型實訓室,讓學生參與到理論知識學習中來,如設計任務解決需要的理論依據、設計原理、計算公式、公式的適用條件、以及設計規范等,學生都會感興趣,此時教師講授這部分知識,恰好與學生探究的知識達到一致,教與學的互動效果也達到了統一。同時充分利用實訓室的教學條件,實現講課、實訓一體化。學生所學到的理論知識,通過實訓室模型,達到了理論與實踐的結合,學生的工程設計成果,交由設計室參與評定,這樣能給學生營造出一種真實的工程設計氛圍,極大地激發了學生的學習興趣,學生被動學習變成了主動學習,學習效果也就體現出來了。
2.3以設計案例為導向的學生成績評定以設計案例為導向的教學方法,需要從根本上改變以往的期末一次考試定成績的方法。既然強調設計,那么考核方法重在設計過程的考核,通過考核及時了解學生在學習過程中對理論知識的認知程度、對實踐知識的掌握程度,每個設計任務完成情況、設計方案的取舍、小組學生的協調配合等都能很好地反映出來,這樣通過各小組對比,以及設計任務完成的時間、質量,根據事先確定的學習過程考核細則,可以對學生學習過程進行綜合評定。