時間:2022-07-02 18:10:57
導言:作為寫作愛好者,不可錯過為您精心挑選的10篇發電技術研究論文,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。
在發電領域減少二氧化碳產生的途徑包括:提高發電效率減少燃耗;采用原子能發電;使用再生(天然)能源。每單位發電量二氧化碳的產生,以礦物燃料發電最高,特別是燒煤電廠。再生能源發電雖然設施的建造會產生二氧化碳,但發電本身不會產生二氧化碳。因此,增加使用再生能源發電和有效使用礦物燃料,是抑制產生二氧化碳的有效方法。
再生能源發電技術可分為水力發電;風力發電;太陽能發電(太陽─熱發電和光伏發電);海洋發電(海洋-熱能轉換、潮汐、洋流、海波);地熱發電。
水力發電
水力發電是目前發電技術中每單位發電量產生二氧化碳最低的。它不會產生破壞環境的物質;在徑流式水電站的情況下,也不需要水庫,對保護環境最為有利。在水庫型和抽水儲能型電站情況下,必須考慮水庫建造對環境的影響。
風力發電
歐洲和美洲在風力渦輪的發展上處于領先地位,隨著在美國公用事業管理政策條例(PURPA)的制定和加州減免賦稅,它們的實際應用迅速取得進展。三菱重工(MHI)已在美國加州安裝了660臺275千瓦級的風力渦輪。實際應用的這些渦輪機,其輸出功率范圍從100千瓦到600千瓦,而兆瓦級的風力渦輪目前正處于中試階段。在日本,迄今輸出功率最高為300-400千瓦,但MHI開發的500千瓦級的渦輪在1996年10月已成功運轉。
太陽-熱發電
太陽能發電技術可分為太陽-熱發電和光伏發電。在前一種情況下,通過搜集的太陽熱能,用水或低沸點流體直接或間接產生的蒸汽驅動汽輪發電機;在后一種情況下,通過p-型和n-型半導體的組合,將陽光直接轉換為電。太陽-熱發電又分為直接和間接(二元循環)型發電系統。在前一種情況下,使用一臺冷凝器,通過直接產生的蒸汽驅動汽輪機;而在后一種情況下,是在主系統使用一種沸點高于水的熔鹽或液態鈉,通過熱交換加熱輔助系統內的工作流體-水或低沸點流體產生蒸汽。雖然前一種系統簡單,但熱效率低于后者,難以在高溫下取得蒸汽,需要輔助燃料點火。
在日本已建成輸出功率1000千瓦的中試裝置,應用了塔型和曲線-直線型冷凝器,用熱水蓄熱設施予以補充。美國在1982年開始對10兆瓦級的發電機進行研究,隨后建成了實際應用輸出功率超過30兆瓦的裝置。
再生能源發電尚有一些問題需研究解決:
(1)由于日光能量密度低(在白天,最高每平方米1千瓦),要放置太陽熱能收集器需要巨大的空間。
(2)太陽輻射的強度變化大,因發電取決于時間和天氣,所以不能實現穩定發電。
(3)由于難以通過熱積累把蒸汽的溫度提高到一個高水平,所以不能實現高效率的蘭金循環(總效率10%~15%)。
為減少成本,實現電力的穩定供應和提高效率,要解決的問題(1)必須改善拋物面反向鏡型和定日鏡塔型系統的熱收集效率;(2)必須應用一補充鍋爐或蓄熱系統;(3)需使用一個二元循環提高溫度,并通過應用低沸點混合液體改善蘭金循環。
光伏發電
應用光伏發電所產生的二氧化碳量僅次于水力發電技術,也不會產生污染環境的物質,是一種理想的干凈發電技術。為發電提供能量的日光是無限的。假定在白天太陽輻射的最高強度是每平方米1千瓦,發電效率為10%,整個地面上每年可能的發電量為1.4億億度,大約相當于全世界能耗量的100倍。這意味著如果把太陽電池放置于不到全球陸地面積的1/100,或其沙漠面積的1/20,所發電量就足以滿足全世界能量的需求。
這種再生能源每單位面積的輸出功率密度低,所需要的面積大約為燒煤電站的20倍。在美國和印度,沙漠面積巨大,目前正在進行的計劃是建造188兆瓦(美國)或50兆瓦(印度)的光伏發電廠。由于世界上有許多地區適用于大規模光伏發電,作為新日照計劃的一部分,發展一種全球性的干凈能源系統,即世界能源網(WENET)正在進行中,該計劃的目的是,在這些地區實現中央光伏發電,用所發出的電使水分解產生氫,氫既可用做能源,又可用做蓄能和輸能介質。從保護全球環境和能量生產角度看,實現這一計劃很重要。
地熱發電
可供發電的地熱資源可粗分為蒸汽、蒸汽和熱水二相流、熱水。地熱蒸汽可不加處理直接引入汽輪機;而二相流被分為熱水和蒸汽,熱水通過閃蒸器變為蒸汽,引入汽輪機的低壓側。在熱水情況下,可采用上述的二元系統(通過使用主系統一側的熱水使輔助側的低沸點液體蒸發,并通過低沸點液體驅動渦輪)。
自從1966和1967年9.5兆瓦、11兆瓦的電站(由日本三菱重工安裝)分別投入運行以來,目前在日本正在運行的裝置有18臺,約生產530兆瓦的電。以間歇泉電站的容量最高,為151兆瓦。美國目前正在運行的間歇泉電站,功率在100萬千瓦以上。
日本三菱重工的技術得到高度評價,它通過單級或雙級閃蒸系統,將熱水變為蒸汽并將蒸汽引入渦輪的中壓或低壓段,這樣,雙相流熱資源就得到了有效應用。
這種雙級閃蒸系統于1977年投入商用,目前用在60多臺發電裝置。
從有效使用小規模地熱資源觀點看,預計未來會發展小型(便攜式)發熱發電裝置。
中圖分類號:TM312 文獻標識碼:A
中國有著豐富的水資源,是水電行業發展的基礎。隨著諸多大型水利工程的建成,有效的推進了我國水電發展,對應的水電機組不斷的朝向大型及超大型發展。根據國內水利發電工程學會相關統計資料顯示,到2020年,國內的700MW水輪發電機數目將會超出150臺。大型水輪發電機具備非正常停機損失大、定轉子額定電壓較高以及發電機定子繞組的中性點引出方法極多等自身特點。
一、大型水輪發電機技術問題分析
如圖1所示,定子鐵芯受力簡示圖。
1 定子鐵芯熱膨脹
隨著國際科學技術的不斷發展,對應技術較為先進的國家,水輪發電機單機容量逐漸擴大,其對應定子鐵芯的直徑也是持續增加,由最初的幾米持續發展至十幾米,或者說還有超過20m的。相對直徑在成倍的提高,緊接著其鐵芯溫升所產生的對應徑向尺寸的膨脹量是在飛速提升,鐵芯以及機座之間的溫差所出現的徑向尺寸過量也隨之提升。水輪發電機定子鐵芯,其鐵芯的溫度升至為50℃時,那么鐵芯徑向膨脹就會達到11mm,鐵芯以及機座溫差是20℃時,那么其鐵芯以及機座的半徑方向過盈量就大概會是2mm,進而促使定子鐵芯因為其受到了機座徑向壓力而存在極大的切向應力。
2 定子鐵芯壓緊質量
在實際運作過程中,大型水輪發電機盡管其機座能夠自由伸縮膨脹,對應的鐵芯軸向單位相關面積壓力會大幅度下降,對應的定子鐵芯就會出現翹曲的情況。要是其機座并不是全部膨脹,其對應的單位壓力面積承受壓力會保持在10kgf/cmZ之下,這時其對應定子鐵芯也還是會極有可能存在翹曲情況。
3 定子鐵芯分瓣
定子鐵芯的結構是分瓣狀的,關于定子鐵芯的裝配,應重視其鐵芯合縫位置會受到分布不均勻以及很難預測的對應擠壓力,該擠壓力對定子鐵芯會造成不良的影響,這樣就在很大的程度上加劇了翹曲情況的出現。導致定子鐵芯在受到相關的力之后出現形變以及振動、損壞等。
4 轉子支架剛度及圓盤形結構
水輪發電機轉子對應支架的結構形式一般是根據其發電機容量以及轉速和尺寸、運輸條件等相關條件來合理選定。通常在中型及小型或者是高速水輪發電機上利用較為簡單的圓盤式或者是無支架轉子結構。對于大型水輪發電機來講,其因為會受到相關運輸條件的制約,一般會利用中心體以及支臂裝配組合形成支臂式的轉子支臂。關于其對應容量以及尺寸非常大的水輪發電機,近年來,國內通常使用的發電站裝配以及拼焊,大多都是多層圓盤式轉子支架。
二、大型水輪發電機關鍵技術改善
1 水輪機模型轉輪水力設計
水輪機的最關鍵部件就是轉輪,其相關性能直接關系著對應發電機運作經濟性以及安全性、穩定性。關于水輪機模型轉輪水力性能設計,國內外的研究差距很大,很多有關項目對應轉輪是使用國外引進的相關技術,其自開發轉輪效率大約是95%,國外所引進的轉輪效率能夠達到94%以上。國內很多較大型工程有效的引進了三維粘性流體數據庫為其最主要的基礎,再合理運用其對應實驗技術以及相關模型制造水平的不斷提升,國內在很短的時間內關于模型轉輪水力設計,跟上了世界的先進水平。
2 大型水輪發電機推力軸承技術
大型發電機最關鍵的構成部分就是推力軸承,其對應的設計以及制造技術是不是最優化會直接關聯到水輪發電機的安全可靠運作。想要合理的對其進行優化,就應該注重其結構以及性能參數,以便于有效提升運作的可靠性。有關企業對其投入了大量的人力物力進行全方位的分析研究。自主開發水輪發電機推力軸承的熱彈性流體動力的性能相關計算分析軟件,構建了三萬噸的對應推力軸承試驗臺,該實驗是現今世界上相關運作中最大推力軸承試驗臺。相關的實驗室研究結果也在很多較大的水電站對應推力軸承運作實測過程中展開了一定程度的對比,以便于有效健全和提升推力軸承設計以及制作技術和測試技術。這些相關的工作也為水輪發電機的推力軸承設計以及制作工藝積累了相當的經驗。
3 大型水輪發電機轉子接地保護方式
大型水輪發電機組的額定轉子電壓通常是較高的,可以超出500V,在強勵時是最高的,并且還伴隨著非常顯著的交流分量,這時直接性的將其取出的危險性極高,并且其對應電纜更不好選擇。我國的很多較大型水電機組在進行工程設計時大都是利用轉子接地保護和失磁保護,并運用轉子電壓測量對應附件再就地安裝在相關的勵磁體系之內,把較大功率的電阻安置在相關勵磁體系屏柜之內,其對應轉子電阻在分壓之后會長距離的接進發電機的保護屏柜中,這時轉子的接地保護功能就會在發電機的屏柜之內很好的實現。
大型水輪發電機的機組轉子接地保護應該合理的就地安置在對應勵磁體系室內,其失磁保護需要的相關電壓最好是通過變送器之后再接進發電機的保護設備上,這樣能夠合理避免掉其高壓電纜存在長距離引線,在很大程度上簡化了勵磁回路并節約了長距離進行高壓控制的電纜費用。
4 大型水輪發電機定子繞組主絕緣技術
有關公司關于定子繞組的地主絕緣是應用了F級的桐馬環氧玻璃粉云母系統,其電機的主絕緣結構以及防暈結構和對應繞組槽部、端部的相關固定結構與各類絕緣材料,總體上來講均是都實現了國產化,并且國產的相關絕緣材料性能均是達到了國際化水平。線棒是多膠帶連接式包扎以及其外包防暈帶絕緣結構,運用對應加熱橫壓來進行固化,以致其能夠一次成型,其對應線棒的尺寸應該是統一的,且要具備較好的互換性。該F級桐馬環氧玻璃粉云母帶的絕緣運作經驗極為豐富以及對應水電站不同電壓等級的較大型水輪發電機和其相關的出口機組之上。
5 大型水電機組結構剛強度分析技術
經過國內外諸多企業的相關設計,其關鍵器件剛強度性能展開大量有限元分析以及比對,也找出了不同企業對于同一個器件的設計差異。關于其結構拓撲以及幾何形狀和板厚尺寸等展開了系統化的分析,找出其關聯機組器件剛強度的關鍵因素,對部件的設計進行的全方位的深刻認識,形成了一定的結構模式,再運用其對應參數來實現建模,有效達到結構的優化及分析過程自動化。其對應的運用變量分析技術定量分析出對應主參數,并給設計師所需要的相關設計曲線,進而給結構改善及創新提供參考。運用尺寸以及形狀充分結合優化技術,能夠合理的找出板厚的配置以及幾何形狀均是合理化的最優化結構。諸多水電機組結構器件優化設計均采用了相關研究成果,并得到了顯著的效果。
結語
水輪機正常的運作狀態下,其對應的定子鐵芯會承受切向電磁扭矩以及相關軸向重力,還有在水輪機快速運作時其對應定子鐵芯會存在一定程度的發熱,機座以及鐵芯均是不一樣的運作情況,所以在溫度不一樣的狀態下就會存在溫差,對應的高溫鐵芯會出現膨脹以及其座機的制約,座機對于鐵芯具備一個徑向壓力,和相關鐵芯膨脹力剛好是相反的;以及其對應的定子鐵芯會受到轉子所具備的徑向磁拉力,和分瓣定子會被拼為整圓形態以配合其鐵芯共同進行運作。水輪機在運作時其鐵芯會受到一定的熱膨脹,致使總體鐵芯對應縫合面會受到不一樣方向所帶來的擠壓力,這樣會導致鐵芯出現損失的情況。因此,對大型水輪發電機關鍵技術問題進行詳細分析研究是勢在必行的。
參考文獻
機電一體化技術是面向應用的跨學科的技術,它是機械技術、微電子技術、信息技術和控制技術等有機融合、相互滲透的結果。今天機電一體化技術發展飛速,機電一體化產品更新日新月異。
一、機電一體化技術的發展歷程
“機電一體化”這個詞是日本安川電機公司在上世紀60年代末作商業注冊時最先創用的。當時及70年代,人們一直把機電一體化看作是機械與電子的結合。國內早期將“機電一體化技術”與“機械電子學”并用,近年來“機電一體化”更流行使用。
80年代,信息技術嶄露頭角。微處理機的性能提高,為更高級的機電一體化產品所采用,典型的機電一體化產品如數控機床、工業機器人和汽車的電子控制系統等。微機作為關鍵技術引入了飛行器系統后,使機械—電子系統在高度控制、排氣控制、振動控制和保險氣袋等方面獲得廣泛應用。
信息技術驅使機械系統在不同程度上利用數據庫,連洗衣機和其他消費品也用上了數據庫驅動系統。這樣,對機電一體化的系統設計方法的探索、成型和系統集成以及并行工程設計和控制的實施日顯重要。此外,光學也進入了機電一體化,產生了“光機電一體化”的新領域。
進入90年代,通信技術進入了機電一體化,機器可像機器人系統那樣遙控和虛擬現實多媒體等技術緊密聯系的計算機控制的網絡化機電一體化日益普及。有些機電一體化機械可兩用,有的在性能上更是多用途的,尤其是微傳感器和執行器技術的發展,和半導體技術以光刻為基礎的方法以及和傳統機電一體化微型化方法的結合,開創了以精密工程和系統集成為特點的機電一體化新分支“微機電一體化”。雖然微加工方法尚未成熟,但將逐漸成為集成控制系統的一個組成部分。之后,機電一體化隨著自動化技術的發展而日益發展,穩步進入了21世紀。
二、典型機電一體化產品的發展趨勢
(一)數控機床
目前我國是全世界機床擁有量最多的國家(近320萬臺),但數控機床只占約5%且大多數是普通數控(發達國家數控機床占10%)。近些年來數控機床為適應加工技術的發展,在以下幾個技術領域都有巨大進步。
1.高速化。由于高速加工技術普及,機床普遍提高了各方面的速度。車床主軸轉速有3000~4000r/min提高到8000~10000r/min;銑床和加工中心主軸轉速由4000~8000r/min提高到12000~40000r/min以上;快速移動速度由過去的10~20m/min提高到48m/min,60m/mni,80m/min,120m/min;在提高速度的同時要求提高運動部件起動的加速度,由過去一般機床的0.5G(重力加速度)提高到1.5G~2G,最高可達15G;直線電機在機床上開始使用,主軸上大量采用內裝式主軸電機。
2.高精度化。數控機床的定位精度已由一般的0.01~0.02mm提高到0.008左右;亞微米級機床達到0.0005mm左右;納米級機床達到0.005~0.01um;最小分辨率為1nm(0.000001mm)的數控系統和機床已問世。
數控中兩軸以上插補技術大大提高,納米級插補使兩軸聯動出的圓弧都可以達到1u的圓度,插補前多程序預讀,大大提高了插補質量,并可進行自動拐角處理等。
3.復合加工,新結構機床大量出現。如5軸5面體復合加工機床,5軸5聯動加工各類異形零件。同時派生出各種新穎的機床結構,包括6軸虛擬軸機床,串并聯絞鏈機床等,采用特殊機械結構,數控的特殊運算方式,特殊編程要求。
4.使用各種高效特殊功能的刀具使數控機床“如虎添翼”。如內冷轉頭由于使高壓冷卻液直接冷卻轉頭切削刃和排除切屑,在轉深孔時大大提高效率。加工剛件切削速度能達1000m/min,加工鋁件能達5000m/min。
5.數控機床的開放性和聯網管理。數控機床的開放性和聯網管理已是使用數控機床的基本要求,它不僅是提高數控機床開動率、生產率的必要手段,而且是企業合理化、最佳化利用這些制造手段的方法。因此,計算機集成制造、網絡制造、異地診斷、虛擬制造、并行工程等等各種新技術都在數控機床基礎上發展起來,這必然成為21世紀制造業發展的一個主要潮流。
(二)自動機與自動生產線
在國民經濟生產和生活中廣泛使用的各種自動機械、自動生產線及各種自動化設備,是當前機電一體化技術應用的又一具體體現。如:2000~80000瓶/h的啤酒自動生產線;18000~120000瓶/h的易拉罐灌裝生產線;各種高速香煙生產線;各種印刷包裝生產線;郵政信函自動分撿處理生產線;易拉罐自動生產線;FEBOPP型三層共擠雙向拉伸聚丙烯薄膜生產線等等,這些自動機或生產線中廣泛應用了現代電子技術與傳感技術。如可編程序控制器,變頻調速器,人機界面控制裝置與光電控制系統等。我國的自動機與生產線產品的水平,比10多年前躍升了一大步,其技術水平已達到或超過發達國家上一世紀80年代后期的水平。使用這些自動機和生產線的企業越來越多,對維護和管理這些設備的相關人員的需求也越來越多。
三、機電一體化技術的發展趨勢
以微電子技術、軟件技術、計算機技術及通信技術為核心而引發的數字化、網絡化、綜合化、個性化信息技術革命,不僅深刻地影響著全球的科技、經濟、社會和軍事的發展,而且也深刻影響著機電一體化的發展趨勢。專家預測,機電一體化技術將向以下幾個方向發展:
(一)光機電一體化方向
一般機電一體化系統是由傳感系統、能源(下轉第80頁)(上接第81頁)(動力)系統、信息處理系統、機械結構等部件組成。引進光學技術,利用光學技術的先天特點,就能有效地改進機電一體化系統的傳感系統、能源系統和信息處理系統。
(二)柔性化方向
未來機電一體化產品,控制和執行系統有足夠的“冗余度”,有較強的“柔性”,能較好地應付突發事件,被設計成“自律分配系統”。在這系統中,各子系統是相互獨立工作的,子系統為總系統服務,同時具有本身的“自律性”,可根據不同環境條件做出不同反應。其特點是子系統可產生本身的信息并附加所給信息,在總的前提下,具有“行動”是可以改變的。這樣,既明顯地增加了系統的能力(柔性),又不因某一子系統的故障而影響整個系統。
(三)智能化方向
今后的機電一體化產品“全息”特征越來越明顯,智能化水平越來越高。這主要得益于模糊技術與信息技術(尤其是軟件及芯片技術)的發展。
四、仿生物系統化方向
今后的機電一體化裝置對信息的依賴性很大,并且往往在結構上處于“靜態”時不穩定,但在動態(工作)時卻是穩定的。這有點類似于活的生物:當控制系統(大腦)停止工作時,生物便“死亡”,而當控制系統(大腦)工作時,生物就很有活力。就目前情況看,機電一體化產品雖然有仿生物系統化方向發展的趨勢,但還有一段很漫長的道路要走。
五、微型化方向
目前,利用半導體器件制造過程中的蝕刻技術,在實驗室中已制造出亞微米級的機械元件。當這一成果用于實際產品時,就沒有必要再區分機械部分和控制器部分了。那時,機械和電子完全可以“融合”機體,執行結構、傳感器、CPU等可集成在一起,體積很小,并組成一種自律元件。這種微型化是機電一體化的重要發展方向。
數字電視地面廣播技術采用數字壓縮技術,在同樣清晰度和音質情況下,用戶可以接收的節目數量提高4~6倍。同一信道中,可同時傳輸附加數據和其他信息,且抗干擾能力強,覆蓋區域內近場和遠場的接收效果幾乎相同,因此,數字電視受到了廣泛的關注。
歐美一些國家對數字電視技術的研究較為深入,已研制出了性能完善的數字電視信號發射機。我國數字電視技術的研究起步相對較晚,還處在實驗階段。為降低成本,數字電視發射機的國產化是我國廣播電視行業發展的必然趨勢。
功率放大器是數字電視發射機中的重要組成部分。通常情況下,數字電視發射機中的信號經COFDM方式調制后輸出中頻模擬信號,通過上變頻送入放大部分。該調制方式包括IFFT(8M)和IFFT(2M)兩種模式,分別由6817和1705個載波組成。每個載波之間的頻率間隔非常近,所以交調信號很容易落在頻帶內,引起交調失真。數字電視的發射機較傳統類型,在線性度、穩定性等方面有著更高的要求。對發射機中的功率放大器要求必須工作在較高的線性狀態下,增益穩定。
發射系統的放大部分分為激勵和主放大電路。其中激勵部分為寬帶功率放大器,為確保地面數字電視傳輸的正常穩定,需要具有良好的穩定性和可靠性,其工作頻段在470MHz~860MHz,工作狀態為AB類;要求增益大于10dB,交調抑制小于-35dB,噪聲功率密度大于130dBc/Hz。本文采用最新的LDMOSFET器件,及平衡放大電路結構?熏設計數字電視發射機中的驅動級功率放大器,經過優化和調試,滿足系統要求。
圖2輸入匹配網絡拓撲圖
1功率放大器設計
1.1功率放大器的放大芯片選型
本文采用摩托羅拉LDMOSFET器件MRF373作為功放的放大芯片。該芯片在線性、增益和輸出能力上相對于BJT器件有較大的提升,使發射機的可靠性和可維護性大大提高。與傳統的分米波雙極型功放管相比,LDMOSFET具有以下顯著優點:
·可以在高駐波比(VSWR=10:1)情況下工作;
·增益高(典型值13dB);
·飽和曲線平滑,有利于模擬和數字電視射頻信號放大;
·可以承受大的過驅動功率,特別適用于DVB-T中COFDM調制的多載波信號;
·偏置電路簡單,無需復雜的帶正溫度補償的有源低阻抗偏置電路。
圖3輸出匹配網絡拓撲圖
LDMOS制造工藝結合了BPT和砷化鎵工藝。與標準MOS工藝不同的是,在器件封裝上,LDMOS沒有采用BeO氧化鈹隔離層,而是直接硬接在襯底上,導熱性能得到改善,提高了器件的耐高溫性,大大延長了器件壽命。由于LDMOS管的負溫效應,其漏電流在受熱時自動均流,而不會象雙極型管的正溫度效應在收集極電流局部形成熱點,從而管子不易損壞。所以LDMOS管大大加強了負載失配和過激勵的承受能力。同樣由于LDMOS管的自動均流作用,其輸入-輸出特性曲線在1dB壓縮點(大信號運用的飽和區段)下彎較緩,所以動態范圍變寬,有利于模擬和數字電視射頻信號放大。LDMOS在小信號放大時近似線性,幾乎沒有交調失真,很大程度簡化了校正電路。MOS器件的直流柵極電流幾乎為零,偏置電路簡單,無需復雜的帶正溫度補償的有源低阻抗偏置電路。
1.2電路結構選擇及比較
小信號S參數可以用于甲類放大器的設計,也就是要求信號的放大基本限制在晶體管的線性區域。然而,涉及到大功率放大器時,由于放大器工作在非線性區,所以小信號通常近似無效。此時必須求得晶體管的大信號S參數或阻抗,以得到合理的設計效果。
一般說來,甲類工作狀態失真系數最小,具有良好的線性度。但是在大功率應用情況下,由于甲類工作狀態的效率低(50%)而不適用。采用甲乙類推挽放大器的電路形式,可以得到與甲類放大器相近的線性指標。
推挽電路形式由兩個獨立且無任何內部連接的單管放大器構成,通過兩個巴倫進行功率的矢量分配與合成。由于巴倫本身具有變阻的特點,因此大大降低了變阻比帶來的阻抗匹配的困難,且巴倫對于偶次諧波具有很好的抑制作用。但是由于巴倫兩邊間隔過小,兩路相互影響較大,所以應用巴倫結構的放大器穩定性較差,且該電路的輸入和輸出駐波比較差。
本文采用平衡放大器的形式,結構如圖1所示。其工作原理與巴倫結構的電路相似,但是由于3dB電橋的應用,使得兩路射頻信號之間隔離較好,有利于兩個端口的匹配。相對于單管放大器結構,其優點如表1。
表1平衡放大器與單管放大器特性比較
特性平衡放大器單管放大器
輸入輸出反射好較差
噪聲特性較好較差
長期穩定性好較差
元件離散性對放大電路影響
較小較大
1.3匹配網絡設計
由于MRF373沒有提供內匹配,所以要在放大電路中構建匹配網絡。數字電視反射系統中的放大電路工作在470MHz~860MHz,需要在寬頻帶范圍內實現阻抗匹配。寬帶放大器匹配電路設計的基本思想是:在放大器的輸入輸出及級間都采用電抗匹配網絡進行多級阻抗變換。該網絡只起匹配作用,不額外損耗功率,可以保證最大的傳輸系數,對器件特性起均衡作用,并可以滿足系統所需要的帶寬要求。
使用器件的IV曲線或者通過輸出功率、工作電壓等參數可以確定負載RL。為使輸出功率最大,用RL表示器件的內部漏極負載,以此作為輸出匹配電路的目標。如果一個網絡對一個復阻抗有最佳匹配,則網絡的輸出阻抗等于負載阻抗的復數共軛值。現在的負載阻抗是純實數RL,所以最佳輸出匹配電路反映到器件漏極負載的阻抗是RL的復數共軛值,即:
RL=(VDD-VDS(sat))2/2P
其中VDD是工作電壓,VDS(sat)是拐點電壓,P是輸出功率。
根據上式可以算出,MRF373的RL大約為6Ω。
本文中的放大電路采用分離元件和分布參數元件混合使用的方法。由于電感比電容有更高的熱損耗,所以在此類電路中通常避免使用電感,而使用高阻抗的傳輸線代替。混合類型的匹配網絡通常包括幾段串連的傳輸線以及間隔配置的并聯電容。該放大器的輸入匹配部分采用了四節連阻抗變換,輸出匹配采用五節連阻抗變換的混合電路形式。輸入、輸出匹配網絡拓撲圖如圖2、圖3所示。
2電路優化與仿真結果
由于數字電視發射系統要求放大電路必須工作在線性放大狀態,可以用小信號S參數法分析。借助器件廠商提供的小信號S參數文件,可以用ADS對整個電路進行小信號S參數仿真,得到小信號增益、端口匹配、隔離及穩定因子K。表2為MRF373在(Vce=26V、Ic=500mA)下的S參數。
一個偉大的時代,必然要產生屬于這個時代的偉大藝術,而這一偉大的藝術也必然要帶著濃厚的時代氣息和獨特的精神烙印呈現于時代的大舞臺上。
當一個時期不能包容它的前一個時期,當它對傳統既要繼承又要反叛的時候,就要產生一個新的歷史時期。如果說現代主義時期,文化藝術形態是垂直根狀的,傳播方向是單一的,科技體征是印刷術和紙張,符號是文字,話語權掌握在知識分子手里,那么后現代歷史時期,文化藝術形態就是平面的,傳播方向不再是單一的而是互動交流的,科技體征不僅是印刷術更是電子媒體,符號不僅是文字更是圖像,話語權不僅掌握在知識分子手里而是受眾手里。因此,當下文化藝術市場是在買方手里,而不是在賣方手里,這是一個大的變化。隨著后現代主義精神的不斷擴大,文化藝術領域形成了多元文化的相互融合,各藝術門類相互集結、互相促生。而包括雜技藝術在內的各藝術門類及藝術家們正處在這樣一個現代主義與后現代主義的交叉時期。
在這個交叉時期,雜技具有強大的兼容性、通化力和最廣泛的參與性,這成為推動雜技發展的根本動力。特別是在20世紀90年代以來雜技藝術發展的興盛時期,受到世界雜技藝術發展的積極影響,
著力推進雜技藝術的理論建設。重視對國內外雜技著作及其他見諸于文字的研究成果的推介、翻譯、引進、輸出等交流工作,創建被業內普遍接受、取得共識的完整的專門理論話語體系(含翻譯)。133229.coM在保持傳統雜技術語的生動性、民族化、生活化的基礎上,徹底改變專業術語使用上的一義多用和多義一用的無序狀態,改變專業術語以口語、土語、俚語及感性經驗為主體的蕪雜繁復的話語方式,提倡一般性書面語表述方式,進而建立起以科學性、系統性、規范性、學理性為主要特征的,便于與其他人文學科交流的專業話語體系。這需要從我們這一代即開始著手來做,扎扎實實地、科學有效地當做基礎來做。目前,有志于雜技研究、翻譯以及演出形式以外的雜技文化建設的人士還不多。從工作機制上講,我國至今還沒有一個專門的雜技研究機構,甚至沒有一個專業雜技研究人員編制。這種落后現狀長時期得不到改變,導致了專業的雜技翻譯作品奇缺,極大地制約了當代
電氣自動化控制技術,能夠實現控制系統的自動化,提升工藝的運行水平。電氣自動化控制是一類新型的技術,核心是電子技術,可以大面積地應用到設備行業中。電氣自動化控制的技術能力高,通過不同技術的相互配合,實現電氣自動化的運行控制,而且自動化控制是電氣運行中的核心,保障生產的精確性和運行速率。電氣自動化控制能夠以少量程序控制多個變量,各個控制對象處于相互配合的狀態,提升了系統操作的水平,監督被控對象的運行過程,期間修正被控對象的運行狀態,使其具備準確、合理的運行方式。
2 電氣自動化控制技術的發展
2.1 智能化
電氣自動化控制技術下的產品、系統等,能夠根據指令智能化的完成操作,簡化操作服務的流程。智能化是電氣自動化控制技術的首要發展方向,正是由于智能化的要求,促使電氣自動化控制技術與信息技術、通訊技術相互融合,注重技術中的性能開發,體現技術控制的速率。
2.2 節約化
節約化發展,是指電氣自動化控制技術應用中實現了節能與環保。例如:電氣自動化控制技術在照明系統中的應用,其可輔助使用新能源,同時控制照明燈具的使用,延長燈具的使用壽命,既可以保障能源利用的效率,又可以提高照明設備的質量。
2.3 信息化
電氣自動化控制技術的信息化發展,改進了技術運行的方式,使電氣自動化中,以信息控制為基礎,引進互聯網、物聯網等理論,支持電氣自動化的控制運行。
2.4 統一化
電氣自動化控制技術拉近了各個行業之間的距離,融入各項技術的同時,朝向統一化的方向發展。在電氣自動化控制技術的作用下,行業間遵循相同的設計標準,使用方法、維護策略等,都逐步統一,在降低行業建設難度的同時,體現統一化發展的優勢[1]。電氣自動化控制技術的統一化發展,消除了行業之間潛在的發展矛盾,提升行業資源的利用效率,加快了信息傳輸、使用的速率。
3 電氣自動化控制技術的應用
3.1 工業
工業是應用最廣泛的行業,因為工業規模較大,對電氣自動化控制的需求大,所以我國積極推進電氣自動化控制技術在工業中的應用,致力于改善傳統工業的運營方式[2]。PLC是電氣自動化控制技術的主要元件,其為一項可編程邏輯控制器,以工業企業為例,分析PLC的應用。該工業為機械制造企業,基于PLC的電氣自動化控制技術,為機械制造系統提供了相關的控制,PLC根據機械制造的需求,編寫了操作指令和邏輯運算程序,簡化了機械制造生產系統的操作,而且PLC的準確度高,規避了該企業生產的誤差,實現了機械制造的自動化、信息化生產,PLC寫入編程后,控制了機械制造的過程,同時控制機械制造的參數,包括尺寸、溫度信息等,按照該企業機械制造的指令,構成閉環生產方式,優化機械制造的工藝流程,而且該企業在PLC中設計了PID模塊,通過PID子程序,準確控制PLC的內部編程,預防機械制造中出現問題。
3.2 交通業
電氣自動化控制技術在交通業中的應用,不僅體現在車輛運輸上,還表現在紅綠燈、監控系統等方面。車輛上的元件、器件等,基本都是電氣自動化控制技術的體現,提供專業的自動化控制,保障車輛通行的安全[3]。例如:電氣自動化控制技術在電子眼中的應用,代替警察執法,實現自動化的違章取證,電子眼監督交通系統中的車輛運行,抓拍違法行為,提交到交通局的操作系統內,減輕了交通執法的工作負擔,電氣自動化控制技術彌補了電子眼的缺陷,促使其可更準確、更快速、更清晰地實現抓拍取證,提升電子眼對交通運輸的監控能力,有效控制電子眼的運行,以免交通執法中出現漏洞。我國各地政府在交通業建設中,積極引進電氣自動化控制技術,完善交通監控體系,目前,測速器、屏顯等多個交通項目中,均涉及到電氣自動化控制技術的使用。
3.3 農業
農業是我國經濟發展的基礎支持,為了推進農業的生產,引入電氣自動化控制技術,全面建設智能農業,加快農業機械化的發展速度。以某地區農業中的大棚種植為例,分析電氣自動化控制技術的應用。該地區傳統的大棚種植,是根據農民種植經驗分配工作,一旦控制不好溫度、濕度,即會影響大棚種植的經濟效益。研究人員將電氣自動化控制技術引入到大棚種植內,以育秧大棚為對象,構建智能控制系統,大棚內安裝不同屬性的無線傳感器,專門收集大棚內的環境參數,如:光照、含水量等,進行自動化的信息采集,傳感器采集的信號傳輸到控制中心,比對標準的參數指標,種植人員掌握大棚育秧的實際情況,同時根據對比結果調節大棚內的環境,遠程控制特定的設備。該大棚內部安裝了高清視頻,同樣接入到控制中心,種植人員可以隨時查看育秧的狀態,電氣自動化控制技術的應用,輔助構建管理平臺,劃分為四個功能模塊,分布是傳感采集、視頻監控、智能分析和遠程控制,整體控制育秧大棚的生長環境,為幼苗的培育提供優質的環境。
3.4 服務業
人們對服務業的需求非常大,目的是方便人們的日常生活,特別是在電子產品上,更是體現出服務業對電氣自動化控制技術的需求。生活中的電子產品,大多應用了電氣自動化控制技術,如:智能手機、ipad、跑步機等,表明電氣自動化對服務業市場的推進作用[4]。近幾年,電氣自動化控制技術的應用,由服務業的電子產品,逐步轉型到企業內,例如:餐飲服務中的“機器換人”概念,餐廳內,機器人取代人工服務,提供點菜、傳菜等服務,機器人是餐飲業的發展趨勢,表明電氣自動化控制技術的重要性,此項技術在“機器換人”中,起到自動化的控制作用,是機器人開發中不可缺少的技術。
4 結束語
電氣自動化技術的發展和應用,表明了該項技術在行業運營中的重要性,滿足我國社會行業建設的基本需求。根據電氣自動化控制技術的應用,落實發展策略,充分發揮電氣自動化控制技術的潛力,保障其在未來的應價值。電氣自動化控制技術的發展和應用,必須符合現代企業的需求,由此才能規范控制技術的實踐應用。
參考文獻
[1]賢陽.應用技術的發展是工業電氣自動化系統的關鍵—2007年紐倫堡電氣自動化(系統和部件)展覽會紀實[J].自動化博覽,2008,Z1:28-30.
[2]吳琦.煤礦電氣自動化控制技術中單片機的應用[J].硅谷,2015,3:118+120.
目前,“中心”已擁有5萬元以上測試儀器30多臺,各類研究平臺12座,可資利用的教學和研究儀器設備約1500萬元。中心的建設推動了能源學科科學研究的發展:近3年來“中心”骨干成員承擔了省部級以上科研課題14個(其中國家級項目6個),國際合作項目2個;承擔市廳級項目11個,企業委托開發課題14個.獲批研究經費總額超過1000萬元。發表了學術研究論文110多篇,其中被權威期刊和被SCI/EI收錄論文近40篇;出版專著(教材)4部;申報獲批授權技術專利30多項.轉讓技術成果5項;作為主要完成單位和完成者獲福建省科技進步獎二等獎1個、三等獎1個;廈門市科技進步獎二等獎1個、三等獎1個。
“中心”的建設對學校的教學工作也起到了良好的促進作用。依托“中心”這一科技創新平臺,新增設了10門專業課程的實驗:通過“中心”建設.集大熱能與動力工程專業與省內近50家企業建立了緊密的產學研合作關系,構建了滿足專業人才培養需要的實踐教學基地,并承擔了省級教改項目“熱能工程卓越工程師培養”的試點工作。2011年.依托本平臺取得的教學成果《“熱能工程”創新型人才培養體系的構建與實踐》被評為集美大學第六屆教學成果一等獎。
另外,中心的建設對促進學術交流方面也起了積極作用。“中心”分別于2008年5月、2008年8月和201O年11月承辦了三次全國性大型學術會議.“中心”的研究骨干還多次參加國內外學術交流并被邀請擔任本學科國內和國際頂級學術會議的會場主席.包括美國機械工程師學會動力工程分會2011年學術年會(ASMEPower2011)分會場主席、國際制冷大會分會場主席、中國工程熱物理學會全國學術年會分會場主席等,有力地提升了集美大學在國內和國際的知名度。
推動產業進程
“中心”自成立以來就一直致力于清潔燃燒理論與技術、低溫余熱利用與工業過程節能、新能源開發與利用及與循環經濟相關的能源綜合利用技術研究,為福建省的高效節能及可再生能源利用技術的產業化進程做出了一系列積極貢獻。
近年來.“中心”在冰蓄冷空調及低溫送風技術、烘干系統的優化集成節能技術、旋風除塵技術、太陽能蝶形反射聚光光伏發電技術、余能(熱)回收利用技術、降低燃燒福建無煙煤鍋爐的飛灰含碳量技術、燃燒無煙煤鏈條爐的節能改造技術、先進的垃圾焚燒爐技術、燃油荷電霧化清潔燃燒技術、可再生能源與低品位熱能海水淡化技術等方面均取得了較大突破,已開發了10多項科技成果,為省內近50家企業提供了節能減排技術服務,服務行業涉及電力、建材、化工、冶金、紡織印染等諸多領域。例如,與廈門同力節能科技有限公司簽訂了《立體多層次蝶型反射聚光光伏發電技術》技術轉讓協議,該項技術直接經濟效益在年1000萬元以上;與鎮江市電站輔機廠有限公司共同進行了《低溫工業煙氣余熱資源化利用成套技術開發》,通過回收余熱,可為企業節省大量燃料從而產生可觀的經濟效益,每年可節能折價人民幣5000~;以上:與廈門銀鷺重工有限公司共同進行了《20t/h級高效燃燒福建無煙煤的CFB鍋爐技術開發》,每年通過煤的高效燃燒和資源綜合利用可增收500萬元以上。近年來.“中心”通過技術轉讓、技術服務、推廣新技術等形式進行了成果推廣,累積每年為企業產生經濟效益近3500萬元。
2009
Hardback
ISBN 9781848003378
Shin’ya Obara著
燃料電池技術作為一種新型發電技術引起了越來越多人的關注,技術水平也得到了很大發展,本書介紹了由燃料電池及其它發電裝置構成的分布式發電機組所組成的微電網的相關技術,作者Shin’ya Obara為日本苫小牧國家科技學院的教授,JSME,ASME,IEEE等多個學會成員,是《The Open Fuels and Energy Science Journal》,《Journal of Computational Science and Technology》,《International Conference on Electric Power and Energy Conversion Systems》,《Applied Mathematical Modeling》等多個雜志審稿人,出版著作17本,發表科技論文100多篇。
本書分為13章。1.考慮部分負荷及負荷波動的小型燃料電池熱電聯供系統,介紹了系統的組成與布置、能量平衡與目標函數、能量輸出特性等內容;2.燃料電池供能網絡最小成本優化配置方案,介紹了系統方案、熱水管路系統釋放熱能的數量、能量平衡、成本計算與目標函數、分析方法與案例研究、分析結果等內容;3.分區協作管理模式引起的發電效率的提高,介紹了系統布置、微電網的發電效率、電力需求模型、分析方法并進行了案例研究,對分析結果進行了討論;4.采用負荷平衡及放熱損失方法考慮減小燃料電池容量的燃料電池供電系統,介紹了負荷平衡和燃料電池的布置方案、分析方法并進行了案例分析;5.柴油發電裝置與燃料電池混合互聯微電網的設備布置方案,介紹了微電網模型、混合互聯微電網模型、設備布置、混合互聯微電網運行方法、柴油發電機特性與質子交換膜型燃料電池特性、系統分析方法并進行了案例研究;6.分布式燃料電池廢熱的有效利用分析法,介紹了熱水管路放熱的途徑與數量、熱能平、熱水管路系統放熱的數量、燃料電池發電與供熱特性、能量需求方式與燃料電池容量,并進行了案例分析,對分析結果進行了研究;7.寒冷地區獨立房間燃料電池的負荷相應特性,介紹了系統布置、每部分裝置的時間常數、分析方法、分析結果與討論;8.可以控制裝置數量的燃料電池微電網的負荷響應特性,介紹了微電網的電能質量、系統中各配置裝置的響應特性、控制變量與分析方法、微電網的負荷響應特性;9.質子交換膜燃料電池與木質生物質發電機混合微電網動態特性,介紹了系統方案、質子交換膜燃料電池與斯特林發電機的控制響應特性、該混合微電網動態特性分析結果;10.考慮到部分負荷運行時效率TIGA的燃料電池與氫發動機混合系統,介紹了系統方案、設備特性,該混合系統的電力與熱能輸出特性,案例分析與結果討論;11.氫氣化城市煤氣發動機與燃料電池混合微電網二氧化碳排放分析,介紹了系統方案、設備特性、案例分析與結果討論;12.帶太陽能重整裝置的燃料電池系統的快速運算法則的發展,介紹了系統方案、能量與質量平衡、該系統的動態運行預測、案例分析與結果討論;13.燃料電池與風力發電機微電網的功率特性,介紹了微電網模型,系統布置設備的響應特性,控制參數與分析方法,微電網的負荷響應特性。
本書結構清晰,表述深入淺出,理論分析之后都有相應的案例分析,有利于對所述內容的理解。該書既可以作為電力相關專業本科生或研究生的教科書,也可以作為相關領域研究人員的參考資料。
論立勇,博士生
風力發電
目前,我國已超過美國,成為全球風電裝機容量最大的國家,同時也成為風能設備最大的生產國。隨著國內風電產業鏈日臻完善、研究規模不斷擴大,成本下降非常顯著,競爭力也逐漸增強,但是在產業鏈最上游的新型材料及半導體器件(控制芯片、電力電子器件等)研究方面仍較落后,主要研究工作集中在中下游的風電整機制造、關鍵零部件配套(發電機、電控、傳動系統等)以及并網技術領域。
沈陽工業大學在風電整機制造方面具有很強的實力,是我國最早從事風力發電技術研究的少數高校之一,設置有風能技術研究所,師資力量完善,先后承擔過多項大型橫、縱向課題,成果顯著。其設計的具有自主知識產權的1.5MW風電機組實現了產業化,占據一定的市場地位,產學研結合能力很強。
華北電力大學作為教育部直屬高校中唯一的以電力為學科特色的大學,成立了國內首家“可再生能源學院”,下設風能與動力工程專業,未來還將籌備生物質發電和太陽能利用專業。研究內容以大容量風力發電接入,對電力系統安全、穩定運行的影響為主,主要研究包括:風電場建模與仿真、風能資源測量與評估、風力發電機組狀態監測與故障診斷、風力發電機組只能控制與優化運行、低速風能利用策略與先進風力發電理論,充分發揮了其在電力系統方面的優勢。
重慶大學機械傳動國家重點實驗室,借助其在機械傳動領域的優勢,在風電機組齒輪箱設計、動態特性研究、工作模態測量及制造工藝方面有深入的研究,并且產學研結合。
汕頭大學新能源研究所在大型風電機組空氣動力學、結構強度及結構動力學研究方面頗有作為,自行開發了大型風力機優化設計系列軟件。
浙江大學流體傳動及控制國家重點實驗室對風力發電系統中的液壓技術有深入研究,包括風機制動系統、定槳距控制和變槳距控制等。
同濟大學機械工程學院在風電機組葉片動力學分析、結構優化設計、剛柔耦合系統模型分析方面經驗豐富。
東南大學在風力發電機研究、設計方面走在前列。近期又集合學校優勢學科,建立了風力發電研究中心,致力于以風力發電為核心的可再生能源發電及應用技術的基礎研究。
電控方面,清華大學、北京交通大學、中科院電工所都有很強的實力。清華大學電機工程與應用電子技術系原名電機工程系,歷史悠悠,師資力量雄厚,在風電接入對電力系統影響、風電機組建模仿真、風電變流器設計及控制等方面有深入研究。北京交通大學電氣工程學院早期隸屬于鐵道部,主要服務于我國軌道交通電傳動裝備產業,在大功率電力電子技術領域積累了豐富經驗,研究實力在國內高校處于領先地位。新能源研究所成立后從事大功率風電機組(直驅或雙饋)并網變流器、中大功率光伏發電逆變器、風電機組仿真及主控系統、微網技術研究,產學研結合能力很強。中科院電工所新能源發電技術研究組是國內最早研究風力發電、太陽光伏發電的單位之一,其大型并網風電機組控制及變流技術、變槳距控制技術以及風電場集中和遠程監控技術等較成熟,還有一些特色研究工作包括:風/光互補、風/柴系統及其控制逆變技術、控制逆變技術等。
光伏發電
光伏發電具有系統簡單以及維護方便等特點,應用面較廣,現在全球裝機總容量已經開始追趕傳統風力發電。太陽能發電主要分為并網電源系統和離網電源系統,目前大規模使用的主要是并網系統,一般包括光伏電池組件、光伏逆變器、配電柜、監控系統等。其中光伏電池組件將太陽能轉化成電能,光伏逆變器與風能變流器類似,可以將光伏電池組件產生的不穩定電能變成穩定的電能并入電網。
我國光伏業正處在爆發式增長期,中國大陸和臺灣的光伏電池廠商占全球總電池產量59%的份額。與風電產業鏈類似,除了最上游的化合物、硅片提純、加工外,我國已形成了較完整的光伏產業鏈,包括晶體硅、薄膜電池片及組件加工、光伏逆變器、系統集成、能源投資商等。
國內高校對于光伏系統研究主要集中于工程應用方面,合肥工業大學教育部光伏系統工程研究中心是我國迄今為止唯一的專門從事光伏系統技術研究的國家重要的科學研究基地,掛靠合肥工業大學電氣與自動化工程學院,主要從事光伏組件建模及仿真、光伏逆變器設計及控制、工程化應用等研究工作,產學研結合較好,承擔多個大型光伏電站設計工作。
海外院校
由于新能源行業涉及領域多、范圍廣,以及我國新能源行業開始起步,人才的缺乏已經成為極為突出的問題,國家、社會、高校、企業都在積極努力培養這方面的人才,學生的擇校就業也因此變得十分靈活。同時,也因為剛剛起步,目前面臨的多是工程應用技術類問題,因此我們的相關研究工作主要分布在中下游,從前面的介紹也可以看出,在新能源上游高端領域,由于技術壁壘很高,國內的研究工作相對較少,但是可以選擇留學歐美高校,得到更進一步的提高。
澳大利亞新南威爾士大學光伏研究中心,由有著“太陽能之父”之稱的馬丁·格林教授領導,專注光伏電池的研究,自上世紀80年代起,30年間畢業于新南威爾士大學光伏中心的中國留學生已經撐起了中國光伏產業的半壁江山。如今,在屈指可數的幾大領頭光伏企業中——尚德、中電光伏、英利、賽維LDK都有新南威爾士大學畢業生的身影,其科研實力可見一斑。
在歐洲,各國都十分重視新能源的開發利用。作為生態村理念的首創國,丹麥是能源問題解決得最好的國家之一。早在2006年,我國就與丹麥簽署了“可再生能源”合作項目,國內許多高校分別與丹麥高校開展聯系。丹麥奧爾堡大學能源技術學院在風力發電、分布式發電、電力系統、電力電子及控制技術等領域有深入研究經驗,并且與許多國家和組織開展合作,產學研實力很強。特別是在風力發電領域優勢突出,核心研究領域包括:風力發電機組及風電場的控制與監測、仿真、設計、優化。
隨著新能源技術發展以及各項政策效應的逐步顯現,開發利用新能源的成本將明顯下降,為人類清潔能源利用和產業結構升級帶來歷史性機遇,新能源終將成為今后世界上的主要能源之一。
Tips:新能源材料與器件專業優勢院校
文/南京航空航天大學 郭棟梁
該專業重點是研究與開發新一代高性能綠色能源材料、技術和器件(如通訊、汽車、醫療領域的動力電源),發展“新能源材料”(新型鋰離子電池材料、新型燃料電池材料和新型太陽能電池材料)的學術研究方向。
新能源材料與器件專業設置,主要依托化學化工學院,跨能源科學、材料科學、化學等多個學科,擬培養能掌握新能源材料專業基本理論、基本知識和工程技術技能,掌握新能源材料組成、結構、性能的測試技術與分析方法,了解新能源材料科學的發展方向,具備開發新能源材料、研究新工藝、提高和改善材料性能的基本能力的新能源材料專門人才。畢業生可在化學能源、太陽能及儲能材料等新能源材料領域從事科學研究與教學、技術開發、工藝設計等方面工作,也可繼續攻讀新能源材料及相關學科高層次專業學位。
新能源技術是21世紀世界經濟發展中最具有決定性影響的五個技術領域之一,新能源材料與器件是實現新能源的轉化和利用以及發展新能源技術的關鍵。新能源材料與器件本科專業是適應我國新能源、新材料、新能源汽車、節能環保、高端裝備制造等國家戰略性新興產業發展需要而設立的,是由材料、物理、化學、電子、機械等多學科交叉,以能量轉換與存儲材料及其器件設計、制備工程技術為培養特色的戰略性新興專業。
高校特色:
華東理工大學
以半導體材料技術、化學電源技術、太陽電池技術等為特色。未來就業集中在光伏太陽能、新能源開發和利用以及半導體材料器件的設計、化學電池開發等。
東南大學
依托電子科學與技術大類專業背景,專業內容側重光電子材料及其應用方面,主要針對太陽能材料制備、檢測和應用,可以拓展到生物能等其他新能源。
四川大學
中圖分類號:TM77 文獻標識碼:A
Analyses the micro network control research status
DUAN Xiao-rui,LI Jin,ZENG Zhao-wei
(College of Electrical Engineering, Guizhou University, Guiyang Guizhou,550025)
Abstract: In recent years, Distributed Generation obtained more and more attention and application, and by the small capacity of distributed power network research. This paper first introduces the concept of micro network and micro network control strategy, and then summarizes and analyzes the current research status of micro network.
Key words: Micro network;The control strategy;The status quo
引言
隨著國民經濟的發展和人民生活水平的提高,近年來用電負荷正急劇增長。與此同時,能源危機與環境保護的壓力正逐漸加大,化石燃料的迅速消耗和燃燒應用中產生的污染問題也已嚴重影響到了人們的正常生活。因此,綠色清潔的新能源以及可再生能源的應用得到了越來越多的重視。分布式發電將分散存在的清潔能源轉化為電能,使分布式能源得到最有效的利用,因此分布式發電技術為清潔能源的推廣應用提供了有力的技術支撐[1]。分布式發電技術不斷發展,將分布式發電供能系統以微網的形式運行,與大電網互為支撐,是發揮分布式發電供能系統能效的最有效方式。
微網概念
微網是一種可將各種小型分布式電源組合起來為當地負荷提供電能的低壓電網。它具有聯網和孤島兩種運行模式,能提高負荷側的供電可靠性。微網中的分布式電源常采用電力電子接口連接到微網,這增加了分布式電源接口控制的靈活性,但是減少了系統的慣性。微網缺少慣性和運行模式的多樣性增加了系統在維持能量平衡及頻率穩定等方面的控制難度。微網既可以通過配電網與大型電力網并聯運行,形成一個大型電網與小型電網的聯合運行系統,也可以獨立地為當地負荷提供電力需求。該靈活運行模式大大提高了負荷側的供電可靠性。同時,微網通過單點接入電網,可以減少大量小功率分布式電源接入電網后對傳統電網的影響。
微網控制策略
微網在實際運行中需要解決的關鍵問題之一就是控制問題。當微網中的負荷或網絡結構發生變化時,如何通過對微網中各種微電源進行有效的協調控制,以保證微網在不同運行模式下都能夠滿足負荷的電能質量要求,是微網能否可靠運行的關鍵[2]。
目前的微網控制方案,按整體控制策略可分為對等控制、主從控制。主從控制一般是指底層微電源的控制是一種主從控制結構:以一個微電源作為主單元,其控制器作為主控制器,其余微電源的控制器作為從控制器。從控制器必須服從主控制器,其之間的通信聯系是強聯系,一旦通信失敗,微網將無法正常工作。主從控制策略主要用于孤島運行時的微網。對等控制就是微網中每個微電源地位相等,不存在起主要支撐作用的主控制單元。對等控制策略基于下垂控制法,分別將頻率和有功功率、電壓和無功功率關聯起來,通過一定的控制算法,模擬傳統電網中的有功、頻率特性曲線和無功、電壓曲線,實現電壓、頻率的自動調節而無須借助于通信。
下垂控制、恒壓恒頻控制和恒功率控制是目前常見三種的微電源接口逆變器控制方法。下垂控制方法就是使接口逆變器模仿傳統電力系統的下垂特性,通過有功和無功來調節微電源輸出的頻率和電迅。該控制方法是基于本地測量的有功和無功值對逆變器進行控制,各微電源之間不需要通信,因此一般用于對等控制策略中[3]。恒壓恒頻控制通過直接給定電壓和頻率的參考值,設計控制器來調節接口逆變器的輸出電壓和頻率,主要用于孤島運行模式,給微網提供頻率和電壓的支撐[4]。主從控制策略中主微電源的控制一般釆用此控制方法。通常PQ控制用于并網運行狀態。設計控制器在并網運行時使逆變器按照給定的有功和無功參考值輸出功率,微電源一般不參與電壓、頻率的調節,主要由大電網提供支撐[5]。當處于孤島運行狀態時,微網必須中有維持電壓和頻率的微電源。
研究現狀
微電網是目前國內外學者的研究熱點,其靈活的運行方式、高質量的供電服務以及綠色高效的經濟性能,使其具有良好的發展前景。我國對微網的研究尚處于起步階段,在國家科技部“863計劃先進能源技術領域2007年度專題課題”中已經包括了微網技術,目前中國科學院電工研究所、清華大學、天津大學等單位相繼開始了對微網的研究。
文獻[6]通過對微網實驗系統微網主從控制模式和對等控制模式進行比較,得到結論:主從控制微網系統可以實現電壓和頻率的無差控制,但對主控單元有很強的依賴性,主控單元的選擇至關重要; 若微網中存在燃機等輸出穩定且易于控制的DG時,應優選其作為主控單元,而光伏風力等間歇性DG作為從控單元; 若微網中不含有可控DG,則選擇儲能裝置為主控單元,但儲能裝置容量將限制其長時間孤島運行。對等控制微網具有冗余性,但沒有考慮系統電壓與頻率的恢復問題,屬于有差控制,魯棒性差,并且在控制和應用上尚存在若干關鍵技術問題亟待攻克,目前僅限于實驗研究階段。
文獻[7]研究了下垂控制和混合控制的微源控制方法,并建立了微網系統仿真模型, 針對計劃孤網和非計劃孤網中的下垂控制和混合控制進行了仿真分析。仿真結果驗證了2種控制方式對維持微網孤網穩定的有效性,并且任何控制方式下,微網再并網時均需對微源出力進行重新調整,才能平滑過渡至并網穩定運行模式。
文獻[8]分析了微網中多個分布式電源采用 P-f 和 Q-V 下垂控制時,微網的頻率穩定性。根據微網內分布式電源的輸出特性和負荷需求特性,設計了一種分布式電源層對等控制與主從控制相結合的微網控制策略,并分析了采用此控制方案后微網在不同運行情況下的暫態特性。
文獻[9]主要研究了微電源接口逆變器的控制方法,通過建立下垂控制小信號模型,仔細分析了電壓頻率、電壓幅值下垂參數和低通濾波器的截止頻率三個參數對于系統穩定性的影響。將微電源等效為直流源或經整流后的直流源,在坐標系中建立了三相逆變器的數學模型;在分析微電源逆變器控制方法和原理的基礎上,設計了基于下垂特性的雙環反饋控制器、PQ控制器。
文獻[10]只考慮并網后電網向微網注入功率時,對含有一個DG的微網并網過程仿真,研究了并網過程中頻率和電壓波動變化,著重分析了在并網前開關兩側電壓相對相位超前和落后的兩種不同情況,提出了微網并網的最佳控制策略:并網時開關兩側的電壓差必須很小,理想狀態為零;電網頻率必須稍高于微網頻率;并網時刻電網電壓必須超前于微網電壓。
文獻[11]詳細分析了PQ控制和V/f控制的原理和方法,對相應的控制器進行設計,并在此基礎上建立起微網的模型。通過不同運行方式仿真驗證了該模型的運行特性,從而證明了控制策略的有效性和正確性。
文獻[12]分析了傳統的下垂控制策略在微電網系統中應用所存在的缺陷,并提出采用倒下垂控制與下垂控制相結合的綜合控制策略。該策略在改善微電網的穩定性,最大限度地限制過流情況發生等方面都具有顯著特點,而且能實現微電網在網絡結構或狀態轉換過程的無縫切換,同時也為不同響應時間的儲能裝置選擇合適的控制策略提供了可能。
由以上的分析可知,目前我國針對微網控制的研究主要集中在下垂控制、恒壓恒頻控制和恒功率控制三種控制方式,在假定條件下通過對其控制原理和方法的分析進行控制器設計,進而搭建模型進行仿真,從而驗證控制策略的有效性。
總結
面對能源危機的挑戰,加強綠色能源的利用,既符合國家的能源政策,又可以緩解現階段能源供求緊張的關系。智能微網的出現,可以較好地解決整個電網控制的復雜性。雖然目前微網的實用化還存在著各種各樣的困難,但微網在降低能耗以及補充電網不足方面的優點會促進專家學者的研究,微網的巨大潛力會凸現出來。
參考文獻
[1]丁明,王敏.分布式發電技術[J].電力自動化設備.2004, 24(7): 31-36
[2]魯宗相,王彩霞,閔勇.微電網研究綜述[J].電力自動化設備.2007,31(19): 100-107.
[3]黃勝利,張偉國,等.電力電子技術在微網中的應用[J].電氣應用.2008,27(9):55-58
[4]趙宏偉,吳濤濤.基于分布式電源的微網技術[J].電力系統及其自動化學報.2008,20(1): 126-128
[5]魯鴻毅,應鑫龍,等.微型電網聯網和孤島運行控制方式初探[J].電力系統保護與控制, 2009, 37(11): 28-31
[6]王成山,楊占剛,王守相,車延博.微網實驗系統結構特征及控制模式分析[J].電力系統自動化,2010,34(1):99-105.
[7]歐陽翚,牛銘.基于不同控制策略的微網仿真[J].電網與清潔能源,2011, 27(3):19-24.
[8]肖朝霞.微網控制及運行特性分析[D][博士論文].天津大學,2008(7).
[9]趙巍.微網綜合控制技術研究[D][碩士論文].南京理工大學,2013(4)
[10]楊艷天, 張有兵, 翁國慶.微網并網控制策略的研究[J].機電工程,2010,27(2):14-20.